scholarly journals Experimental Investigation ofOil-WaterTwo-Phase Flow in Horizontal, Inclined, and Vertical Large-Diameter Pipes: Determination of Flow Patterns, Holdup, and Pressure Drop

2021 ◽  
pp. 1-16
Author(s):  
Tarek Ganat ◽  
Meftah Hrairi ◽  
Raoof Gholami ◽  
Taha Abouargub ◽  
Eghbal Motaei

Liquid-liquid phase flow in pipes merits further investigation as a challenging issue that has very rich physics and is faced in everyday applications. It is the main problem challenging the fluid flow mechanism in the oil and gas industry. The pressure gradient of liquid flow and flow pattern are still the topics of numerous research projects. In this paper, the emphasis is on further investigation to research the flow pattern, water holdup (HW), and pressure decrease for vertical, horizontal, and inclined flow directions of oil and water flows. Test section lines of 4.19-in. (106.426 mm) inner diameter (ID) and 5-m horizontal, 5-m inclined, and 5-m vertical test sections were serially connected. The experiments were conducted at 40°C using 2-cp viscosity oil and tap water, and oil density of 850 kg/m3, at the standard conditions. Fifty experiments were executed at 250 kPa at the multiphase flow test facility, with horizontal, upward (0.6° and 4°), downward (−0.6° and −4°) hilly terrain and vertical pipes. The oil and water superficial velocities were changed between 0.03 and 2 m/s. This evidence was obtained using video recordings; the flow patterns were observed, and the selection of each flow pattern was depicted for each condition. For horizontal and inclined flow, new flow patterns were documented (e.g., oil transfer in a line forms at the top of the pipeline, typically at high water rate, and water transfer at the lower part of the pipe at a high oil rate). The data were taken at each flow condition, resulting in new holdup and pressure drop. The results show that the flow rate and the pipe inclination angle have major impacts on the holdup and pressure drop performances. In the vertical flow, a clear peak was demonstrated by experiments after the superficial oil velocity reached a certain value. This peak is known as phase inversion point, where after this peak, the pressure starts declining as the superficial oil velocity increases. Also, slippage has been observed after varying inlet oil flow rates between the two phases. The experiments showed that with minor alteration in the inclination angle, the slippage was significantly changed. This study presented new experimental results (measured mainly at horizontal, inclined, and vertical flow conditions) of HW, flow pattern, and pressure drop. These findings are key evidence of the evolving oil-water and flowline estimate models.

Author(s):  
Weilin Qu ◽  
Seok-Mann Yoon ◽  
Issam Mudawar

Knowledge of flow pattern and flow pattern transitions is essential to the development of reliable predictive tools for pressure drop and heat transfer in two-phase micro-channel heat sinks. In the present study, experiments were conducted with adiabatic nitrogen-water two-phase flow in a rectangular micro-channel having a 0.406 × 2.032 mm cross-section. Superficial velocities of nitrogen and water ranged from 0.08 to 81.92 m/s and 0.04 to 10.24 m/s, respectively. Flow patterns were first identified using high-speed video imaging, and still photos were then taken for representative patterns. Results reveal that the dominant flow patterns are slug and annular, with bubbly flow occurring only occasionally; stratified and churn flow were never observed. A flow pattern map was constructed and compared with previous maps and predictions of flow pattern transition models. Annual flow is identified as the dominant flow pattern for conditions relevant to two-phase micro-channel heat sinks, and forms the basis for development of a theoretical model for both pressure drop and heat transfer in micro-channels. Features unique to two-phase micro-channel flow, such as laminar liquid and gas flows, smooth liquid-gas interface, and strong entrainment and deposition effects are incorporated into the model. The model shows good agreement with experimental data for water-cooled heat sinks.


Author(s):  
Yuqing Xue ◽  
Huixiong Li ◽  
Tianyou Sheng ◽  
Changjiang Liao

A large amount of air need be transported into the reservoir in the deep stratum to supply oxygen to some microbes in Microbial Enhanced Oil Recovery (MEOR). Air-water two-phase flows downward along vertical pipeline during the air transportation. Base on the experiment data described in this paper, the characteristics of air-water two phase flow patterns were investigated. The flow pattern map of air-water two phase flows in the pipe with inner diameter of 65 mm was drawn, criterions of flow pattern transition were discussed, and the dynamic signals of the pressure and the differential pressure of the two phase flow were recorded to characterize the three basic flow regimes indirectly. The frictional pressure drop of downward flow in vertical pipe must not be disregarded contrast with upward two phase flow in the vertical pipe because the buoyancy must be overcame when the gas flows downward along pipe, and there would be a maximum value of frictional when the flow pattern translated from slug flow to churn flow.


2004 ◽  
Vol 126 (3) ◽  
pp. 288-300 ◽  
Author(s):  
Weilin Qu ◽  
Seok-Mann Yoon ◽  
Issam Mudawar

Knowledge of flow pattern and flow pattern transitions is essential to the development of reliable predictive tools for pressure drop and heat transfer in two-phase micro-channel heat sinks. In the present study, experiments were conducted with adiabatic nitrogen-water two-phase flow in a rectangular micro-channel having a 0.406×2.032mm2 cross-section. Superficial velocities of nitrogen and water ranged from 0.08 to 81.92 m/s and 0.04 to 10.24 m/s, respectively. Flow patterns were first identified using high-speed video imaging, and still photos were then taken for representative patterns. Results reveal the dominant flow patterns are slug and annular, with bubbly flow occurring only occasionally; stratified and churn flow were never observed. A flow pattern map was constructed and compared with previous maps and predictions of flow pattern transition models. Features unique to two-phase micro-channel flow were identified and employed to validate key assumptions of an annular flow boiling model that was previously developed to predict pressure drop and heat transfer in two-phase micro-channel heat sinks. This earlier model was modified based on new findings from the adiabatic two-phase flow study. The modified model shows good agreement with experimental data for water-cooled heat sinks.


Author(s):  
Hiroyasu Ohtake ◽  
Hideyasu Ohtaki ◽  
Yasuo Koizumi

The frictional pressure drops and two-phase flow patterns of gas-liquid two-phase flow in mini-micro pipes and at vena contract and expansion were investigated experimentally. Test liquid was water; test gas was argon. The diameter of the test mini-pipe was 0.5, 0.25 and 0.12 mm, respectively. The pressure drop data and the flow pattern were collected over 2.1 < Ug < 92.5 m/s for the superficial gas velocity and 0.03 < Ul < 10 m/s for the superficial liquid velocity. The experimental results show that the flow patterns were slug, churn, ring and annular flows; pure bubbly flow pattern was not observed in a range of the present experimental conditions. The two-phase friction multiplier data for D > 0.5 mm showed to be in good agreement with the conventional correlations. On the other hand, the two-phase friction multiplier data for D < 0.25 mm differed from the calculated values by the conventional correlations. Then, thickness of liquid film around a gas plug and size of gas core were estimated and the effect of frictional pressure drop on channel size was discussed through Knudsen Number of gas and instability on liquid-gas interface. The coefficients of sudden enlargement and sudden contraction in mini-pipes for the gas-water two-phase flow were modified from the present experimental results.


2021 ◽  
Author(s):  
Faraj Ben Rajeb ◽  
Syed Imtiaz ◽  
Yan Zhang ◽  
Amer Aborig ◽  
Mohamed M. Awad ◽  
...  

Abstract Slug flow is one of the most common flow patterns in non-Newtonian two-phase flow in pipes. It is a very common occurrence in gas-liquid two-phase flow in the pipe. Usually, it is an unfavorable flow pattern due to its unsteady nature, intermittency as well as high pressure drop. The differences between slug flow and elongated bubble flow are not clear because usually these two types of flow combined under one flow category. In general, these two-phase flow regimes are commonly defined as intermittent flow. In the present study, pressure gradient, and wave behavior in slug flow have been investigated depending on experimental work. In addition, void fraction has been estimated regarding available superficial liquid and gas velocities. The experimental records of superficial velocities of gas and liquid for slug flow and other flow patterns is used to create flow regime map for the gas non-Newtonian flow system. The effect of investigated flow regime velocities for non-Newtonian/gas flow on pressure drop and void fraction is reported. Pressure drop has been discovered to be reduced in slug flow more than other flow patterns due to high shear thinning behavior.


Author(s):  
Wen Liu ◽  
Bofeng Bai

Swirling gas-liquid two-phase flow patterns and pressure drop in vertical pipes of a large diameter are widely present in practical applications but not well documented in experimental studies. This paper presented an experimental study on gas-liquid two phase flow patterns and pressure drop inside a vertical pipe of 62mm in inner diameter (ID) containing a helical tape insert. Experimental results were obtained in a vertical visualization test section with a length of 7m, liquid mass velocities ranging from 0.3 to 1000 kg/(m2·s), and gas mass velocities from 3.2 to 900kg/(m2·s). Considering the decay of the swirl flow, the swirling flow regime map at different cross sections (z/D = 16, 32 and 64) were concluded, and their effects on the pressure drop were investigated.


1999 ◽  
Vol 121 (1) ◽  
pp. 1-8 ◽  
Author(s):  
J. O̸. Tengesdal ◽  
C. Sarica ◽  
Z. Schmidt ◽  
D. Doty

A comprehensive mechanistic model is formulated to predict flow patterns, pressure drop, and liquid holdup in vertical upward two-phase flow. The model identifies five flow patterns: bubble, dispersed bubble, slug, churn, and annular. The flow pattern prediction models are the Ansari et al. (1994) model for dispersed bubble and annular flows, the Chokshi (1994) model for bubbly flow, and a new model for churn flow. Separate hydrodynamic models for each flow pattern are proposed. A new hydrodynamic model for churn flow has been developed, while Chokshi’s slug flow model has been modified. The Chokshi and Ansari et al. models have been adopted for bubbly and annular flows, respectively. The model is evaluated using the expanded Tulsa University Fluid Flow Projects (TUFFP) well data bank of 2052 well cases covering a wide range of field data. The model is also compared with the Ansari et al., (1994), Chokshi (1994), Hasan and Kabir (1994), Aziz et al. (1972), and Hagedorn and Brown (1964) methods. The comparison results show that the proposed model performs the best and agrees well with the data.


Author(s):  
Aritra Sur ◽  
Dong Liu

Gas-liquid two-phase flow in microchannels with hydraulic diameters of 100–500 μm exhibits drastically different flow behaviors from its counterpart in conventional macroscopic channels. Two particular issues are how to determine the two-phase flow patterns and how to predict the two-phase pressure drop at given flow conditions in these microchannels. This paper presents an experimental study of adiabatic two-phase flow of air-water mixture in circular microchannels with inner diameters of 100, 180 and 324 μm, respectively, to investigate the effects of channel size and phase velocity on the two-phase flow pattern and pressure drop. The air and water superficial velocities were in the range of 0.01–120 m/s and 0.005–5 m/s. Two-phase flow patterns were visualized using highspeed photographic technique. Four basic flow patterns, namely, bubbly flow, slug flow, ring flow and annular flow, were observed. The two-phase flow maps were then constructed and the transition boundaries between different flow regimes were identified. It was found that the slug flow is the dominant two-phase flow pattern in microchannels, and the transition boundaries generally shift to regions of higher gas superficial velocities as the channel dimension decreases. The experimental measurements of two-phase pressure drop were compared to the predictions from the available two-phase models in the literature. Results show that the flow pattern-based models provide the best prediction of two-phase pressure drop in microchannels.


2007 ◽  
Vol 2 ◽  
pp. 25-32 ◽  
Author(s):  
Toru SUKAWA ◽  
Tomoya HASEGAWA ◽  
Kenji YOSHIDA ◽  
Isao KATAOKA

Sign in / Sign up

Export Citation Format

Share Document