Scientific Approach to Planning and Implementation of Blind Refracturing in Horizontal Wells with MSF Completion in Low-Permeability Reservoirs

2021 ◽  
Author(s):  
Almaz Makhmutovich Sadykov ◽  
Sergey Anatolyevich Erastov ◽  
Maxim Sergeevich Antonov ◽  
Denis Vagizovich Kashapov ◽  
Tagir Ramilevich Salakhov ◽  
...  

Abstract One of the fundamental methods of developing low-permeability reservoirs is the use of multi-stage hydraulic fracturing in horizontal wells. Decreasing wells productivity requires geological and technical measures, where one of the methods is "blind" refracturing. Often, only one "blind" hydraulic fracturing is carried out for all ports of multistage hydraulic fracturing, the possibility of carrying out two or more stages of "blind" hydraulic fracturing is considered in this article. The purpose of the article is to increase the productivity of horizontal wells with multi-stage hydraulic fracturing by the "blind" refracturing method. A one-stage and two-stage approach was implemented when planning and performing "blind" hydraulic fracturing with analysis of treatment pressures, indicating a possibility for reorientation of the fracture during the second stage in a horizontal wellbore. Based on the experience of the "blind" hydraulic fracturing performed at the Kondinskoye field, "NK "Kondaneft" JSC carried out pilot work on "blind" refracturing at four horizontal wells of the Zapadno -Erginskoye field. A geomechanical model was used, built based on well logging and core studies carried out at "RN-BashNIPIneft" LLC. The total mass of the planned proppant per well was 280-290 tons, while this tonnage was pumped in one or more stages. A one-stage "blind" refracturing approach was successfully performed in one well, two-stage hydraulic fracturing was implemented in three wells, where in one of the wells, after two stages to open ports, initial hydraulic fracturing was also carried out to the last, previously non-activated port. In the case of two-stage hydraulic fracturing, the first stage purpose was to saturate the reservoir-fracture system with the injection of a "sand plug" with a high concentration of proppant at the end of the job to isolate the initial injectivity interval, determined based on the interpretation of well logging data and analysis of the wellhead treatment pressure. The second stage purpose was the initiation and possible reorientation of the fracture in a new interval, confirmed by an increase in surface pressure during hydraulic fracturing and instantaneous shut-in pressure. This article summarizes the results and lessons learned from the pilot works carried out using the geomechanical model and well productivity assessment before and after "blind" fracturing. The analysis of surface pressure based on production data indicating fracture reorientation is presented. The recommendations and accumulated experience presented in this work should increase the effectiveness of repeated "blind" refracturing in horizontal wells with multi-stage hydraulic fracturing.

2021 ◽  
Author(s):  
Azat Albertovich Gimazov ◽  
Ildar Shamilevich Bazyrov

Abstract The article describes a method for developing low-permeability reservoirs using horizontal wells with multi-stage hydraulic fracturing. The effectiveness of the new method lies in protecting the horizontal part of the production well by drilling it through a non-reservoir plastic reservoir adjacent directly to the target reservoir. The paper considers various implementations of the technology and estimates the increase in oil recovery factor for each of them based on the results of hydrodynamic modeling. The risks associated with the implementation of the technology are considered. Methods for their reduction are proposed.


Author(s):  
Вадим Александрович Чемеков ◽  
Артем Маратович Шагиахметов

Сейчас, когда истощение базы углеводородного сырья происходит все быстрее, разработка залежей низкопроницаемых коллекторов требует дополнительных методов стандартных способов эксплуатации. Одним из методов добычи трудноизвлекаемых запасов является многостадийный гидроразрыв пласта, который позволяет существенно увеличить эффективность эксплуатации горизонтальных скважин. Now, when the depletion of the hydrocarbon base is faster, the development of low-permeability reservoirs requires additional methods of standard operating methods. One of the methods for extracting hard-to-recover reserves is multi-stage hydraulic fracturing, which can significantly increase the efficiency of horizontal wells.


2022 ◽  
Author(s):  
Mikhail Klimov ◽  
Rinat Ramazanov ◽  
Nadir Husein ◽  
Vishwajit Upadhye ◽  
Albina Drobot ◽  
...  

Abstract The proportion of hard-to-recover reserves is currently increasing and reached more than 65% of total conventional hydrocarbon reserves. This results in an increasing number of horizontal wells put into operation. When evaluating the resource recovery efficiency in horizontal wells, and, consequently, the effectiveness of the development of gas condensate field, the key task is to evaluate the well productivity. To accomplish this task, it is necessary to obtain the reservoir fluid production profile for each interval. Conventional well logging methods with proven efficiency in vertical wells, in case of horizontal wells, will require costly asset-heavy applications such as coiled tubing, downhole tractors conveying well logging tools, and Y-tool bypass systems if pump is used. In addition, the logging data interpretation in the case of horizontal wells is less reliable due to the multiphase flow and variations of the fluid flow rate. The fluorescent-based nanomaterial production profiling surveillance technology can be used as a viable solution to this problem, which enables cheaper and more effective means of the development of hard-to-recover reserves. This technology assumes that tracers are placed downhole in various forms, such as marker tapes for lower completions, markers in the polymer coating of the proppant used for multi-stage hydraulic fracturing, and markers placed as fluid in fracturing fluid during hydraulic fracturing or acid stimulation during bottom-hole treatment. The fundamental difference between nanomaterial tracers production profiling and traditional logging methods is that the former offers the possibility to monitor the production at frac ports in the well for a long period of time with far less equipment and manpower, reduced costs, and improved HSE.


2021 ◽  
Author(s):  
Aleksander Valerievich Miroshnichenko ◽  
Valery Alekseevich Korotovskikh ◽  
Timur Ravilevich Musabirov ◽  
Aleksei Eduardovich Fedorov ◽  
Khakim Khalilovich Suleimanov

Abstract The deterioration of the reservoir properties of potential oil and gas bearing areas on mature and green fields, as well as the increase in the volume of hard-to-recover reserves on low-permeable reservoirs set us new challenges in searching and using effective development technologies to maintain and even increase the oil production levels. Based on successful international experience, Russian oil and gas companies use horizontal wells (HW) with multi-stage hydraulic fracturing (MSHF) for the cost-effective development of low-permeable reservoirs. Thus, since the first pilot works of drilling technologies and completion of HW with MSHF in 2011, at the beginning of 2020, over 1,200 HW with MSHF were drilled and came on stream at the fields of LLC RN-Yuganskneftegaz, about half of which are at the exploitation play AS10-12 of the northern license territory (NLT) of the Priobskoye field. In searching the best technologies and engineering solutions, the company tested different lengths of horizontal section of HW, the number of hydraulic fracturing (HF) stages and distances between hydraulic fracturing ports, as well as different specific mass of the proppant per frac port. Recently, there has been a tendency in design solutions to increase the length of the HWs and the number of hydraulic fractures with a decreasing distance between the frac ports and a decreasing specific mass of the proppant per frac port. This work studies the actual and theoretical efficiency of HW with MSHF of various designs (different lengths of horizontal section of HW and the number of HF stages) and to assess the viability of increasing the technological complexity, as well as to analyze the actual impact of loading the proppant mass per port on performing HW with MSHF. The study is based on the results of the analysis of the factual experience accumulated over the entire history of the development of the exploitation play AS10-12 of the NLT of the Priobskoye field of the Rosneft Company. In studying the viability of increasing the technological complexity, especially, increasing the length of horizontal section of HW, increasing the number of HF stages, and reducing the distance between the frac ports: we discovered the typical methodological errors made in analyzing the efficiency of wells of various designs; we developed the methodology for analysis of the actual multiplicity of indicators of wells of various designs, in particular, HW with MSHF relative to deviated wells (DW) with HF; we carried out the statistical analysis of the actual values of the multiplicity of performance indicators and completion parameters of HW with MSHF of various designs relative to the surrounding DW with HF of the exploitation play AS10-12 of the NLT of the Priobskoye field; we performed the theoretical calculation of the multiplicity of the productivity coefficient for the HW with MSHF of various designs relative to DW with HF for the standard development system of the exploitation play AS10-12 of the NLT of the Priobskoye field; we compared the actual and theoretical results. The paper also presents the results of studying the actual effect of changes of proppant's mass per port on performance indicators of HW with MSHF of the same design and with an increase in the number of fractures of the hydraulic fracturing without changing the length of horizontal section of HW. As for performance indicators, being the basis for estimating the efficiency of HW with MSHF of various designs, we used the productivity index per meter of the effective reservoir thickness and the cumulative fluid production per meter of the effective reservoir thickness per a certain period of operation. And as the completion parameters, we used the length of the horizontal section of HW, the number of HF stages, the distance between the frac ports, and the specific mass of the proppant per meter of the effective reservoir thickness per frac port. The results of this work are the determining vector of development for future design decisions in improving the efficiency of HW with MSHF.


2021 ◽  
Author(s):  
Ruslan Rubikovich Urazov ◽  
Alfred Yadgarovich Davletbaev ◽  
Alexey Igorevich Sinitskiy ◽  
Ilnur Anifovich Zarafutdinov ◽  
Artur Khamitovich Nuriev ◽  
...  

Abstract This research presents a modified approach to the data interpretation of Rate Transient Analysis (RTA) in hydraulically fractured horizontal well. The results of testing of data interpretation technique taking account of the flow allocation in the borehole according to the well logging and to the injection tests outcomes while carrying out hydraulic fracturing are given. In the course of the interpretation of the field data the parameters of each fracture of hydraulic fracturing were selected with control for results of well logging (WL) by defining the fluid influx in the borehole.


2021 ◽  
pp. 52-62
Author(s):  
V. P. Ovchinnikov ◽  
O. V. Rozhkova ◽  
S. N. Bastrikov ◽  
D. S. Leontiev ◽  
P. V. Ovchinnikov

The article discusses the main technological processes of well construction for the production of high-viscosity hydrocarbons from productive lowporosity reservoirs with high temperature and pressure conditions, which include shale deposits of Bazhenov formation. According to the results of the review and analysis of existing solutions in the development of this deposits, the following measures were justified and proposed: construction of branched multi-hole azimuth horizontal wells, implementation of selective multi-stage hydraulic fracturing in the productive formation; the use of oil-based process fluids when opening the reservoir, the use of plugging materials for isolation of the reservoir, the hardening product of which is represented by thermally stable hydrate phases (hydrobasic hydrosilicates). Вranched wells have a long horizontal end (about 1 000 meters or more). Only a part of the horizontal section works effectively, which is the basis for the development and application of the staged, both in time and along the strike, hydraulic fracturing method. At the level of the invention, a method and apparatus for carrying out multistage selective hydraulic fracturing in wells with horizontal completion have been developed. The article describes a method for implementing multistage selective hydraulic fracturing, comparing this method with the existing ones. Much attention is given to the need to use hydrocarbon-based solutions for the initial opening the reservoir, to use cement slurries from composite materials to separate the reservoir, the hardening product of which is a stone formed by low-basic calcium hydrosilicate.


2021 ◽  
Author(s):  
Ivan Krasnov ◽  
Oleg Butorin ◽  
Igor Sabanchin ◽  
Vasiliy Kim ◽  
Sergey Zimin ◽  
...  

Abstract With the development of drilling and well completion technologies, multi-staged hydraulic fracturing (MSF) in horizontal wells has established itself as one of the most effective methods for stimulating production in fields with low permeability properties. In Eastern Siberia, this technology is at the pilot project stage. For example, at the Bolshetirskoye field, these works are being carried out to enhance the productivity of horizontal wells by increasing the connectivity of productive layers in a low- and medium- permeable porous-cavernous reservoir. However, different challenges like high permeability heterogeneity and the presence of H2S corrosive gases setting a bar higher for the requirement of the well construction design and well monitoring to achieve the maximum oil recovery factor. At the same time, well and reservoir surveillance of different parameters, which may impact on the efficiency of multi-stage hydraulic fracturing and oil contribution from each hydraulic fracture, remains a challenging and urgent task today. This article discusses the experience of using tracer technology for well monitoring with multi-stage hydraulic fracturing to obtain information on the productivity of each hydraulic fracture separately.


2021 ◽  
Author(s):  
Vitaly Virt ◽  
Vladimir Kosolapov ◽  
Vener Nagimov ◽  
Andrey Salamatin ◽  
Yulia Fesina ◽  
...  

Abstract Profitable development of hard-to-recover reserves often involves drilling of horizontal wells with multistage hydraulic fracturing to increase the oil recovery factor. Usually to monitor the fracture sweep efficiency, pressure transient analysis is used. However, in case of several fractures this method delivers only average hydrodynamic parameters of the well-fracture system. This paper illustrates the value of temperature logging data and demonstrates possibilities of the 3-D thermo-mechanical modelling in evaluating the differential efficiency of multi-stage hydraulic fracturing.


Sign in / Sign up

Export Citation Format

Share Document