Production Performance Analysis of Volga-Ural Mature Waterflood with PRIME Diagnostic Metrics

2021 ◽  
Author(s):  
Artur Mihailovich Aslanyan ◽  
Bulat Galievich Ganiev ◽  
Azat Abuzarovich Lutfullin ◽  
Ildar Zufarovich Farkhutdinov ◽  
Marat Yurievich Garnyshev ◽  
...  

Abstract The paper presents a practical case of production performance analysis at one of the mature waterflood oil fields located at the Volga-Ural oil basin with a large number of wells. It is a big challenge to analyse such a large production history and requires a systematic approach. The main production complication is quite common for mature waterflood projects and includes non-uniform sweep, complicated by thief injection and thief water production. The main challenge is to locate the misperforming wells and address their complications. With the particular asset, the conventional single production analysis techniques (oil production trend, watercut trend, reservoir and bottom-hole pressure trend, productivity trend, conventional pressure build-up surveys and production logging) in the vast majority of cases were not capable of qualifying the well performance and assessing of remaining reserves status. The performance analysis of such an asset should be enhanced with new diagnostic tools and modern methods of data integration. The current study has made a choice in favor of using a PRIME analysis which is multi-parametric analytical workflow based on a set of conventional and non-conventional diagnostic metrics. The most effective diagnostics in this study have happened to be those are based on 3D dynamic micro-models, which are auto-generated from the reservoir data logs. PRIME also provided useful insights on well performance, formation properties and the current conditions of drained reserves which helped to select the candidates for infill drilling, pressure maintenance, workovers, production target adjustments and additional surveillance. The paper illustrates the entire PRIME workflow, starting from the top-level field data analysis, all the way to generating a summary table containing well diagnostics, justifications and recommendations.

SPE Journal ◽  
2018 ◽  
Vol 24 (02) ◽  
pp. 618-646
Author(s):  
Ryan Will ◽  
Qian Sun ◽  
Luis F. Ayala

Summary Hydrocarbon-reservoir-performance forecasting is an integral component of the resource-development chain and is typically accomplished using reservoir modeling, by means of either numerical or analytical methods. Although complex numerical models provide rigorous means of capturing and predicting reservoir behavior, reservoir engineers also rely on simpler analytical models to analyze well performance and estimate reserves when uncertainties exist. Arps (1945) empirically demonstrated that certain reservoirs might decline according to simple, exponential, hyperbolic, or harmonic relationships; such behavior, however, does not extend to more-complex scenarios, such as multiphase-reservoir depletion. Because of this limitation, an important research area for many years has been to transform the equations governing flow through porous media in such a way as to express complex reservoir performance in terms of closed analytical forms. In this work, we demonstrate that rigorous compositional analysis can be coupled with analytical well-performance estimations for reservoirs with complex fluid systems, and that the molar decline of individual hydrocarbon-fluid fractions can be expressed in terms of rescaled exponential equations for well-performance analysis. This work demonstrates that, by the introduction of a new partial-pseudopressure variable, it is possible to predict the decline behavior of individual fluid constituents of a variety of gas/condensate-reservoir systems characterized by widely varying richness and complex multiphase-flow scenarios. A new four-region-flow model is proposed and validated to implement gas/condensate-deliverability calculations at late times during variable-bottomhole-pressure (BHP) production. Five case studies are presented to support each of the model capabilities stated previously and to validate the use of liquid-analog rescaled exponentials for the prediction of production-decline behavior for each of the hydrocarbon species.


2010 ◽  
Vol 13 (06) ◽  
pp. 861-872 ◽  
Author(s):  
Yan Pan ◽  
Medhat M. Kamal ◽  
Jitendra Kikani

Summary Advanced drilling technology has been widely and successfully applied to construct multilateral wells in reservoirs. This paper presents several field applications of a generalized semianalytical segmented model accounting for multilateral-well systems in commingled layered reservoirs. Cases include a heavy-oil field, Al Rayyan oil field offshore Qatar, and Dos Cuadras field offshore California. The model can predict the production performance under either constant-rate or constant-pressure conditions of a well system with any number of arbitrarily oriented laterals of any length and nonuniform formation damage. The reservoir layers, with different porosities, anisotropic permeabilities, and drainage areas, are noncommunicating except through the wellbore. The solution is valid for large reservoirs and when no-flow or constant-pressure boundaries affect the pressure behavior. Results of applying this method in the field cases showed that the model enabled us to predict multilateral-well performance, to obtain information about reservoir connectivity, and to estimate well and reservoir properties in a multilayer system. Uncertainty caused by the large number of unknown parameters in such a complex system represents the main challenge in using this method. It is recommended to use other means together with pressure transient data to reduce the uncertainty. The presented model and the lessons learned from the field applications provide engineers with a tool enabling the use of transient data collected from multilateral wells in multilayer systems for reservoir characterization and performance forecast.


2013 ◽  
Vol 53 (1) ◽  
pp. 37
Author(s):  
Colin Jordan ◽  
Geoff Barker ◽  
Bruce Gunn

Evaluation of Australia’s emerging unconventional gas sector (particularly shale gas, basin centered and tight gas) relies heavily on the use of North American analogues because of the lack of production history in Australian plays. While the use of analogues can be useful, no two shale or tight gas plays are identical so the use of analogues can also lead to significant pitfalls that need to be understood to be avoided. Production performance and recoverable hydrocarbons are strongly coupled to completion technology (far more than a conventional oil or gas project), and the successful implementation of technology requires an intimate knowledge of both reservoir petrophysics and geomechanics, not to mention a well-developed topside supply chain. This paper discusses the application of analogues to major Australian unconventional plays in the Cooper, Canning, and Perth basins, presents a case history from the Canning Basin, and provides guidance on the adjustments needed to ensure realistic predictions of recovery and well performance.


2017 ◽  
Vol 14 (1) ◽  
pp. 118-128
Author(s):  
Jason Cohen ◽  
Judy Backhouse ◽  
Omar Ally

Young people are important to cities, bringing skills and energy and contributing to economic activity. New technologies have led to the idea of a smart city as a framework for city management. Smart cities are developed from the top-down through government programmes, but also from the bottom-up by residents as technologies facilitate participation in developing new forms of city services. Young people are uniquely positioned to contribute to bottom-up smart city projects. Few diagnostic tools exist to guide city authorities on how to prioritise city service provision. A starting point is to understand how the youth value city services. This study surveys young people in Braamfontein, Johannesburg, and conducts an importance-performance analysis to identify which city services are well regarded and where the city should focus efforts and resources. The results show that Smart city initiatives that would most increase the satisfaction of youths in Braamfontein  include wireless connectivity, tools to track public transport  and  information  on city events. These  results  identify  city services that are valued by young people, highlighting services that young people could participate in providing. The importance-performance analysis can assist the city to direct effort and scarce resources effectively.


Geologija ◽  
2020 ◽  
Vol 63 (2) ◽  
pp. 281-294
Author(s):  
Luka Serianz ◽  
Nina Rman ◽  
Mihael Brenčič

A comparative analysis of step-drawdown tests was performed in order to estimate the well performance in Slovenian thermal and mineral water wells. Tests were performed in 30 wells, each having its own maximum production rate determined in the concession decrees. The main focus of well performance analysis, using graphical analysis of the Jacob approximate equation, was to estimate the adequacy of the wells production rate as well as to identify possible changes in the technical status of the wells over years. 5 of total 30 wells were not included in the analysis due to technical issues during test performance. Well performance analysis includes the calculation of nonlinear well losses related to turbulent flow and linear head loss (aquifer and well) assumed to be related to laminar flow. Results indicate that the ratios between nonlinear well losses and linear head (well and aquifer) losses, in this paper referred as laminar losses, are from 6.9 % to 97.4 %. Laminar losses parameter suggests, all investigated wells were classified with either good (11 wells), medium (7 wells) or poor (7 wells) performance. The addressed analysis represents a very important basis for further thermal and mineral water extraction, e.g. optimizing the maximum allowed production rate as granted in concession decrees and diagnose potential changes in the technical status of each well


2014 ◽  
Author(s):  
Denis Malakhov ◽  
Michael Gunningham ◽  
Abdulla Al-sadah ◽  
Abdulla Al-Suwaidi

2021 ◽  
Author(s):  
Aymen Alhemdi ◽  
Ming Gu

Abstract Slickwater-sand fracturing design is widely employed in Marcellus shale. The slickwater- sand creates long skinny fractures and maximizes the stimulated reservoir volume (SRV). However, due to the fast settling of sand in the water, lots of upper and deeper areas are not sufficiently propped. Reducing sand size can lead to insufficient fracture conductivity. This study proposes to use three candidate ultra-lightweight proppants ULWPs to enhance the fractured well performance in unconventional reservoirs. In step 1, the current sand pumping design is input into an in-house P3D fracture propagation simulator to estimate the fracture geometry and proppant concentrations. Next, the distribution of proppant concentration converts to conductivity and then to fracture permeability. In the third step, the fracture permeability from the second step is input into a reservoir simulator to predict the cumulative production for history matching and calibration. In step 4, the three ULWPs are used to replace the sand in the frac simulator to get new frac geometry and conductivity distribution and then import them in reservoir model for production evaluation. Before this study, the three ULWPs have already been tested in the lab to obtain their long-term conductivities under in-situ stress conditions. The conductivity distribution and production performance are analyzed and investigated. The induced fracture size and location of the produced layer for the current target well play a fundamental effect on ultra-light proppant productivity. The average conductivity of ULWPs with mesh 40/70 is larger and symmetric along the fracture except for a few places. However, ULWPs with mesh 100 generates low average conductivity and create a peak conductivity in limited areas. The ULW-3 tends to have less cumulative production compared with the other ULWPs. For this Marcellus Shale study, the advantages of ultra-lightweight proppant are restricted and reduced because the upward fracture height growth is enormous. And with the presence of the hydrocarbon layer is at the bottom of the fracture, making a large proportion of ULWPs occupies areas that are not productive places. The current study provides a guidance for operators in Marcellus Shale to determine (1) If the ULWP can benefit the current shale well treated by sand, (2) what type of ULWP should be used, and (3) given a certain type of ULWP, what is the optimum pumping schedule and staging/perforating design to maximize the well productivity. The similar workflow can be expanded to evaluate the economic potential of different ULWPs in any other unconventional field.


Sign in / Sign up

Export Citation Format

Share Document