Foam Flow in Different Pore Systems—Part 1: The Roles of Pore Attributes and Their Variation on Trapping and Apparent Viscosity of Foam

SPE Journal ◽  
2021 ◽  
pp. 1-18 ◽  
Author(s):  
Abdulrauf Rasheed Adebayo

Summary Lateral propagation of foam in heterogeneous reservoirs, where pore geometries vary laterally, depends on the roles of pore geometries on the foam properties. In this paper, the pore attributes of 12 different rock samples were characterized in terms of porosity, permeability, pore shape, pore size, throat size, aspect ratio, coordination number, and log mean of surface relaxation times (T2LM). These were measured from gas porosimeter and permeameter, X-ray microcomputed tomography (CT)-basedpore-network models, thin-section photomicrographs, and nuclear magnetic resonance (NMR) surface relaxometry. The samples have a wide range of porosity: 12 to 29%; permeability: 1 to 5,000 md; average pore size: 3.7 to 9 µm; average throat size: 2.4 to 8 µm; average aspect ratio: 1 to 1.7; average coordination number: 2.6 to 5.2; and T2LM: 9.4 to 740 ms. Nitrogen foam flow experiments (without oil) were then conducted on each rock sample using a specialized coreflood apparatus. A graphical analysis of the coreflood data was used to estimate the total saturation of trapped foam (10 to 66%), flowing foam (3 to 14%), and apparent viscosity of foam (3.2 to 73 cp). Trapped foam saturation and apparent viscosity values were then correlated with each of the measured pore attributes. The results revealed that all pore attributes, except aspect ratio, have positive correlations with foam trapping and apparent viscosity. The best correlation with trapped foam saturation was obtained when the most influential pore attributes (pore size, throat size, aspect ratio, and coordination number) were combined into a single mathematical function. Foam apparent viscosity also appears to be mostly influenced by trapped foam saturation, permeability, and coordination number of pore systems. Trapping is also likely enhanced by the presence of fenestral or channel pores. Furthermore, the shape and angularity of pores seem to facilitate snap-off and trapping of foam, because rock samples with angular pores trapped the highest foam saturation compared with other samples with rounded and subrounded pores. It was also shown that the correlation between trapped foam saturation (and foam apparent viscosity) and the absolute permeability of porous media may reverse at some high-permeability values (greater than several darcies), when one or both of the following conditions exist: (1) The aspect ratio of a lower-permeability porous medium is lower than that of a higher-permeability porous medium, and (2) the coordination number of a lower-permeability porous medium is higher than that of a higher-permeability porous medium. Finally, T2LM showed a good correlation with foam trapping, making NMR logging a prospective tool for pre-evaluating foam performance in targeted reservoir sections.

Author(s):  
Svetlana Rudyk ◽  
Sami Al-Khamisi ◽  
Yahya Al-Wahaibi

AbstractFactors limiting foam injection for EOR application are exceptionally low rock permeability and exceedingly high salinity of the formation water. In this regard, foam formation using internal olefin sulfonate is investigated over a wide salinity range (1, 5, 8, 10, and 12% NaCl) through 10 mD limestone. The relationships between pressure drop (dP), apparent viscosity, liquid flow rate, total flow rate, salinity, foam texture, and length of foam drops at the outlet used as an indicator of viscosity are studied. Foaming is observed up to 12% NaCl, compared to a maximum of 8% NaCl in similar core-flooding experiments with 50 mD limestone and 255 mD sandstone. Thus, the salinity limit of foam formation has increased significantly due to the low permeability, which can be explained by the fact that the narrow porous system acts like a membrane with smaller holes. Compared to the increasing dP reported for highly permeable rocks, dP linearly decreases in almost the entire range of gas fraction (fg) at 1–10% NaCl. As fg increases, dP at higher total flow rate is higher at all salinities, but the magnitude of dP controls the dependence of apparent viscosity on total flow rate. Low dP is measured at 1% and 10% NaCl, and high dP is measured at 5, 8, and 12% NaCl. In the case of low dP, the apparent viscosity is higher at higher total flow rate with increasing gas fraction, but similar at two total flow rates with increasing liquid flow rate. In the case of high dP, the apparent viscosity is higher at lower total flow rate, both with an increase in the gas fraction and with an increase in the liquid flow rate. A linear correlation is found between dP or apparent viscosity and liquid flow rate, which defines it as a governing factor of foam flow and can be considered when modeling foam flow.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Na Zhang ◽  
Fangfang Zhao ◽  
Pingye Guo ◽  
Jiabin Li ◽  
Weili Gong ◽  
...  

Porosity and permeability of two typical sedimentary rocks in coal bearing strata of underground coal mines in China, i.e., mudrocks and fine-grained sandstones, were comprehensively investigated by multiple experimental methods. Measured porosity averages of the helium gas porosity (φg), MIP porosity (φMIP), water porosity (φw), and NMR porosity (φNMR) of the twelve investigated rock samples range from 1.78 to 16.50% and the measured gas permeabilities (Kg) range from 0.0003 to 2.4133 mD. Meanwhile, pore types, pore morphologies, and pore size distributions (PSD) were determined by focused ion beam scanning electron microscopy (FIB-SEM), mercury intrusion porosimetry (MIP), and low-field nuclear magnetic resonance (NMR). FIB-SEM image analyses showed that the mineral matrix pores including interparticle (interP) and intraparticle (intraP) pores with varied morphologies are the dominant pore types of the investigated rock samples while very few organic matter (OM) pores were observed. Results of the MIP and the full water-saturated NMR measurements showed that the PSD curves of the mudrock samples mostly present a unimodal pattern and nanopores with pore diameter less than 0.1 μm are their predominant pore type, while the PSD curves of the fine-grained sandstone samples are featured by a bimodal distribution. Furthermore, comparison of the full water-saturated and irreducible-water-saturated NMR measurements indicated that pores in the mudrocks are solely adsorption pores (normally pore size < 0.1 μm) whereas apart from a fraction of adsorption pores, a large part of the pores in the sandstone sample with relatively high porosity are seepage pores (normally pore size > 0.1 μm). Moreover, the PSD curves of NMR quantitatively converted from the NMR T2 spectra by T2Pc and weighted arithmetic mean (WAM) methods are in good agreement with the PSD curves of MIP. Finally, the applicability of three classic permeability estimation models based on MIP and NMR data to the investigated rock samples was evaluated.


2011 ◽  
Vol 29 (6) ◽  
pp. 817-825 ◽  
Author(s):  
Muhammad Khurram Zahoor

Reservoir surveillance always requires fast, unproblematic access and solution to different relative permeability models which have been developed from time to time. In addition, complex models sometimes require in-depth knowledge of mathematics for solution prior to use them for data generation. For this purpose, in-house software has been designed to generate rigorous relative permeability curves, with a provision to include users own relative permeability models, a part from built-in various relative permeability correlations. The developed software with state-of-the-art algorithms has been used to analyze the effect of variations in residual and maximum wetting phase saturation on relative permeability curves for a porous medium having very high non-uniformity in pore size distribution. To further increase the spectrum of the study, two relative permeability models, i.e., Pirson's correlation and Brooks and Corey model has been used and the obtained results show that the later model is more sensitive to such variations.


1998 ◽  
Vol 543 ◽  
Author(s):  
A. Huwe ◽  
F. Kremer ◽  
M. Arndt ◽  
P. Behrens ◽  
W. Schwieger ◽  
...  

AbstractBroadband dielectric spectroscopy (10−2 Hz - 109Hz) is employed to study the molecular dynamics of low-molecular-weight glassforming liquids being confined to nanopores. For the H-bond forming liquid propylene glycol being confined to (uncoated and silanized) nanopores (pore size: 2.5 nm, 5.0 nm and 7.5 nm) a molecular dynamics is observed which is comparable to that of the bulk liquid. Due to surface effects in uncoated nanopores the relaxation time distribution is broadened on the long term side and the mean relaxation rate is decreased by about half a decade. This effect can be counterbalanced by lubricating the inner surfaces of the pores resulting in a relaxation rate which is slightly faster compared to the bulk liquid. For the H-bonded liquid ethylene glycol (EG) embedded in zeolites of different pore size and topology one observes a sharp transition from a single-molecule dynamics to that of a liquid depending on the coordination number of the confined molecules. While EG in silicalite (showing a single molecule relaxation) has four neighboring molecules, EG in zeolite beta or AIPO4-5 has a coordination number of five and behaves like a bulk liquid.


2020 ◽  
Vol 22 (3) ◽  
pp. 1181-1186 ◽  
Author(s):  
Youxuan Ni ◽  
Licheng Miao ◽  
Jiaqi Wang ◽  
Junxiang Liu ◽  
Mingjian Yuan ◽  
...  

Steric effects of graphyne supports on the intermediates and coordination number of metal atoms determine the CO2 electrocatalytic activity of SACs.


2007 ◽  
Vol 7 (2) ◽  
pp. 668-672 ◽  
Author(s):  
Bo Chi ◽  
Erick S. Victorio ◽  
Tetsuro Jin

TiO2-based titanate nanotube film was directly synthesized by hydrothermal treatment of Ti substrate in NaOH solution. The prepared high aspect ratio nanotubes have diameter of 10nm and pore size of 5 nm with length of several microns. The nanotubes show the same structure and component characteristics as the nanotubes prepared through hydrothermal treatment of TiO2. Other nanostructured titanate as oriented nanofiber film and translucent film were also prepared by adjusting the hydrothermal conditions. The formation mechanism of nanostructured titanate was discussed.


2001 ◽  
Vol 124 (1) ◽  
pp. 203-207 ◽  
Author(s):  
M. R. Dhanasekaran ◽  
Sarit Kumar Das ◽  
S. P. Venkateshan

A numerical study has been made to analyze the effects of anisotropic permeability and thermal diffusivity on natural convection in a heat generating porous medium contained in a vertical cylindrical enclosure with isothermal wall and the top and bottom perfectly insulated surfaces. The results show that the anisotropies influence the flow field and heat transfer rate significantly. The non-dimensional maximum cavity temperature increases with increase in permeability ratio. For aspect ratio greater than or equal to two, the nondimensional maximum cavity temperature increases with an increase in the thermal diffusivity ratio. For aspect ratio equal to unity, there exists a critical value of thermal diffusivity ratio at which the maximum cavity temperature is a minimum. This critical value increases with an increase in the value of anisotropic permeability ratio. Based on a parametric study correlations for maximum cavity temperature and average Nusselt number are presented.


SPE Journal ◽  
2015 ◽  
Vol 20 (04) ◽  
pp. 824-830 ◽  
Author(s):  
Richard F. Sigal

Summary The behavior of fluids in nanometer-scale pores can have a strong functional dependence on the pore size. In mature organic-shale reservoirs, the nuclear-magnetic-resonance (NMR) signal from methane decays by surface relaxation. The methane NMR spectrum provides an uncalibrated pore-size distribution for the pores that store methane. The distribution can be calibrated by calculating a pore-wall-surface area from a methane-Langmuir-adsorption isotherm. When this method was applied to samples from a reservoir in the dry-gas window, the pores containing methane had pore sizes that ranged from 1 to approximately 100 nm. Approximately 20–40% of the pore volume was in pores smaller than 10 nm, where deviation from bulk-fluid behavior can be significant. The samples came from two wells. The surface relaxivity for the sample from Well 2 was somewhat different from the relaxivity for the two samples from Well 1. Samples that adsorbed more methane had smaller pore sizes. This methodology to obtain pore-size distributions should be extendable to more-general organic-shale reservoirs.


1981 ◽  
Vol 23 (4) ◽  
pp. 171-178 ◽  
Author(s):  
M. Malik ◽  
M. Chandra ◽  
R. Sinhasan

This paper presents the analysis of a partial porous journal bearing for its static and dynamic characteristics. Tangential velocity slip at the interface of the fluid film and the porous medium has been taken into account. The analysis is general and can be easily adapted to plane journal and non-circular bearing configurations. The results reported in the paper are for centrally loaded 120 degree partial bearings of aspect ratio equal to unity. These results include static as well as dynamic characteristics of the bearing. A wide range of permeability parameter and R/C ratio has been covered making the data quite comprehensive for design purposes.


Sign in / Sign up

Export Citation Format

Share Document