New-Age Kolmogorov Full-Function Neural Network KNN Offers High-Fidelity Reservoir Predictions via Estimation of Core, Well Log, Map and Seismic Properties

2021 ◽  
Author(s):  
Ivan Priezzhev ◽  
Dmitry Danko ◽  
Uwe Strecker

Abstract Instead of relying on analytical functions to approximate property relationships, this innovative hybrid neural network technique offers highly adaptive, full-function (!) predictions that can be applied to different subsurface data types ranging from (1.) core-to-log prediction (permeability), (2.) multivariate property maps (oil-saturated thickness maps), and, (3.) petrophysical properties from 3D seismic data (i.e., hydrocarbon pore volume, instantaneous velocity). For each scenario a separate example is shown. In case study 1, core measurements are used as the target array and well log data serve training. To analyze the uncertainty of predicted estimates, a second oilfield case study applies 100 iterations of log data from 350 wells to obtain P10-P50-P90 probabilities by randomly removing 40% (140 wells) for validation purposes. In a third case study elastic logs and a low-frequency model are used to predict seismic properties. KNN generates a high level of freedom operator with only one (or more) hidden layer(s). Iterative parameterization precludes that high correlation coefficients arise from overtraining. Because the key advantage of the Kolmogorov neural network (KNN) is to permit non-linear, full-function approximations of reservoir properties, the KNN approach provides a higher-fidelity solution in comparison to other linear or non-linear neural net regressions. KNN offers a fast-track alternative to classic reservoir property predictions from model-based seismic inversions by combining (a) Kolmogorov's Superposition Theorem and (b) principles of genetic inversion (Darwin's "Survival of the fittest") together with Tikhonov regularization and gradient theory. In practice, this is accomplished by minimizing an objective function on multiple and simultaneous outputs from full-function (via look-up table) Kolmogorov neural network runs. All case studies produce high correlations between actual and predicted properties when compared to other stochastic or deterministic inversions. For instance, in the log to seismic prediction better (simulated) resolution of neural network results can be discerned compared to traditional inversion results. Moreover, all blind tests match the overall shape of prominent log curve deflections with a higher degree of fidelity than from inversion. An important fringe benefit of KNN application is the observed increase in seismic resolution that by comparison falls between the seismic resolution of a model-based inversion and the simulated resolution from seismic stochastic inversion.

2021 ◽  
Author(s):  
Siddharth Garia ◽  
Arnab Kumar Pal ◽  
Karangat Ravi ◽  
Archana M Nair

<p>Seismic inversion method is widely used to characterize reservoirs and detect zones of interest, i.e., hydrocarbon-bearing zone in the subsurface by transforming seismic reflection data into quantitative subsurface rock properties. The primary aim of seismic inversion is to transform the 3D seismic section/cube into an acoustic impedance (AI) cube. The integration of this elastic attribute, i.e., AI cube with well log data, can thereafter help to establish correlations between AI and different petrophysical properties. The seismic inversion algorithm interpolates and spatially populates data/parameters of wells to the entire seismic section/cube based on the well log information. The case study presented here uses machine learning-neural network based algorithm to extract the different petrophysical properties such as porosity and bulk density from the seismic data of the Upper Assam basin, India. We analyzed three different stratigraphic  units that are established to be producing zones in this basin.</p><p> AI model is generated from the seismic reflection data with the help of colored inversion operator. Subsequently, low-frequency model is generated from the impedance data extracted from the well log information. To compensate for the band limited nature of the seismic data, this low-frequency model is added to the existing acoustic model. Thereafter, a feed-forward neural network (NN) is trained with AI as input and porosity/bulk density as target, validated with NN generated porosity/bulk density with actual porosity/bulk density from well log data. The trained network is thus tested over the entire region of interest to populate these petrophysical properties.</p><p>Three seismic zones were identified from the seismic section ranging from 681 to 1333 ms, 1528 to 1575 ms and 1771 to 1814 ms. The range of AI, porosity and bulk density were observed to be 1738 to 6000 (g/cc) * (m/s), 26 to 38% and 1.95 to 2.46 g/cc respectively. Studies conducted by researchers in the same basin yielded porosity results in the range of 10-36%. The changes in acoustic impedance, porosity and bulk density may be attributed to the changes in lithology. NN method was prioritized over other traditional statistical methods due to its ability to model any arbitrary dependency (non-linear relationships between input and target values) and also overfitting can be avoided. Hence, the workflow presented here provides an estimation of reservoir properties and is considered useful in predicting petrophysical properties for reservoir characterization, thus helping to estimate reservoir productivity.</p>


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Tamer Moussa ◽  
Salaheldin Elkatatny ◽  
Mohamed Mahmoud ◽  
Abdulazeez Abdulraheem

Permeability is a key parameter related to any hydrocarbon reservoir characterization. Moreover, many petroleum engineering problems cannot be precisely answered without having accurate permeability value. Core analysis and well test techniques are the conventional methods to determine permeability. These methods are time-consuming and very expensive. Therefore, many researches have been introduced to identify the relationship between core permeability and well log data using artificial neural network (ANN). The objective of this research is to develop a new empirical correlation that can be used to determine the reservoir permeability of oil wells from well log data, namely, deep resistivity (RT), bulk density (RHOB), microspherical focused resistivity (RSFL), neutron porosity (NPHI), and gamma ray (GR). A self-adaptive differential evolution integrated with artificial neural network (SaDE-ANN) approach and evolutionary algorithm-based symbolic regression (EASR) techniques were used to develop the correlations based on 743 actual core permeability measurements and well log data. The obtained results showed that the developed correlations using SaDE-ANN models can be used to predict the reservoir permeability from well log data with a high accuracy (the mean square error (MSE) was 0.0638 and the correlation coefficient (CC) was 0.98). SaDE-ANN approach is more accurate than the EASR. The introduced technique and empirical correlations will assist the petroleum engineers to calculate the reservoir permeability as a function of the well log data. This is the first time to implement and apply SaDE-ANN approaches to estimate reservoir permeability from well log data (RSFL, RT, NPHI, RHOB, and GR). Therefore, it is a step forward to eliminate the required lab measurements for core permeability and discover the capabilities of optimization and artificial intelligence models as well as their application in permeability determination. Outcomes of this study could help petroleum engineers to have better understanding of reservoir performance when lab data are not available.


First Break ◽  
2012 ◽  
Vol 30 (4) ◽  
Author(s):  
L. MacGregor ◽  
S. Bouchrara ◽  
J. Tomlinson ◽  
U. Strecker ◽  
J. Fan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document