Considerations for Analytical Qualification of Tubular Connections for Thermal and HPHT Wells

2021 ◽  
Author(s):  
Jueren Xie

Abstract It is important to complete thermal and high-pressure/high-temperature (HPHT) wells with tubular connections that possess adequate structural integrity and sealing capacity under the severe load conditions typically experienced by these wells throughout their life cycle. Individual premium connection designs are required to be evaluated and qualified through physical tests to broadly adopted industry protocols, such as ISO/PAS 12835: 2013 for thermal wells that experience temperatures from 180°C to 350°C, and ISO 13679:2019 and API RP 5C5:2017 for HPHT wells which experience peak temperatures up to 180°C and pressures greater than 70 MPa. Recognizing the time and capital expenses associated with completing full-scale physical testing of product lines with multiple connection designs of different tubular diameter, weight, and grade, industry is developing a hybrid approach that supplements results from physical qualification tests with numerical/analytical simulation, such as Finite Element Analysis (FEA). The key challenges associated with analytical evaluation are the lack of evaluation criteria and suitable guidelines for analysis methodologies. This paper provides a review of recent work related to the development of sealability evaluation criteria; and presents guidelines to facilitate performance evaluation of tubular connections in thermal and HPHT wells through advanced FEA. For thermal well applications, this paper presents a methodology for quantitative evaluation of sealability of casing connections, as a supplement to the determination of a biased test population using FEA following ISO/PAS 12835:2013 requirement. For HPHT wells, this paper presents considerations for analyzing various testing loads, such as Test Series A (internal and external pressure cycles), Test Series B (internal pressure with bending), Test Series C (thermal and mechanical cycles), and Limit Load Cases. Analysis examples with generic premium connections are presented to demonstrate the use of the proposed analysis methodologies.

Author(s):  
Yigit Isbiliroglu ◽  
Cagri Ozgur ◽  
Evren Ulku ◽  
Nish Vaidya ◽  
Kristofor Paserba

In-line valves are qualified for static as well as dynamic loads from seismic and hydrodynamic (HD) events. Seismic loads are generally characterized by frequency content less than about 33 Hz whereas HD loads may exhibit a broad range of frequencies greater than 33 Hz. HD loads may also result in spectral accelerations significantly in excess of those due to the design basis seismic events. Current regulatory guidelines do not specifically address the evaluation of equipment response to high frequency loading. This paper investigates the response of skid and line mounted valves of piping systems under HD loads by using several independent rigorous finite element analysis solutions for various piping system segments. It presents a hybrid approach for the evaluation of the response of valves to HD and seismic loads. The proposed approach significantly reduces the amount of individual analysis and testing needed to qualify the valves. First, valve responses are evaluated on the basis of displacements since HD loads are generally characterized by high frequencies and small durations. Second, the damage potential of the loads on the valve actuators is represented by the energy imparted to the actuator quantified in terms of Arias intensity. The rationale for using the energy content is based on the fact that damage due to dynamic loading is related not only to the amplitude of the acceleration response but also to the duration and the number of cycles over which this acceleration is imposed.


Author(s):  
Huifeng Jiang ◽  
Xuedong Chen ◽  
Zhichao Fan

Heretofore, several kinds of codes are applicable to the structural integrity assessment for pipe containing defects, i.e. API 579, R6 and BS 7910 etc. In this paper, different methods from API 579-1/ASME FFS-1: 2007 and R6-2000 were employed to assess the integrity of pipe containing a circumferential through-thickness crack. However, there was a significant difference between the calculated load ratios by these two codes, although the calculated fracture ratios were very close. To verify these results, elastic-plastic finite element analysis was carried out to calculate the limit load and the load ratio. Additionally, the experimental results and our previous engineering experience were also referred to. The final results imply that the larger load ratio obtained from R6-2000 rather than API 579 code is more reasonable for the pipe with good fracture toughness.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
R. Adibi-Asl ◽  
R. Seshadri

Structural integrity of an in-service component containing damage such as corrosion and thermal hot spot has to be evaluated regularly so as to certify the acceptance and safety of continued service of the component. In this paper, limit load solutions of a damaged conical shell, particularly local wall thinning and thermal hot spot, is investigated. The derived solutions are based on identifying the regions in the damaged component that directly participate in the plastic action (kinematically active). The concepts of reference volume and decay length are employed to identify the kinematically active regions in the damaged conical shell. The different solutions proposed in this paper are compared with the elastic-plastic finite element analysis. The results indicate that proposed solutions can be used with acceptable accuracy to make integrity assessment decisions.


Author(s):  
R. Adibi-Asl ◽  
R. Seshadri

Structural integrity of an in-service component containing damage such as corrosion and thermal hot spot has to be evaluated regularly so as to certify the acceptance and safety of continued service of the component. In this paper, limit load solutions of a damaged conical shell, particularly local wall thinning and thermal hot spot, is investigated. The derived solutions are based on identifying the regions in the damaged component that directly participate in the plastic action (kinematically active). The concepts of reference volume and decay length are employed to identify the kinematically active regions in the damaged conical shell. The different solutions proposed in this paper are compared with elastic-plastic finite element analysis. The results indicate that proposed solutions can be used with acceptable accuracy to make integrity assessment decisions.


1998 ◽  
Vol 26 (1) ◽  
pp. 51-62
Author(s):  
A. L. A. Costa ◽  
M. Natalini ◽  
M. F. Inglese ◽  
O. A. M. Xavier

Abstract Because the structural integrity of brake systems and tires can be related to the temperature, this work proposes a transient heat transfer finite element analysis (FEA) model to study the overheating in drum brake systems used in trucks and urban buses. To understand the mechanics of overheating, some constructive variants have been modeled regarding the assemblage: brake, rims, and tires. The model simultaneously studies the thermal energy generated by brakes and tires and how the heat is transferred and dissipated by conduction, convection, and radiation. The simulated FEA data and the experimental temperature profiles measured with thermocouples have been compared giving good correlation.


2015 ◽  
Vol 12 (19) ◽  
pp. 5871-5883 ◽  
Author(s):  
L. A. Melbourne ◽  
J. Griffin ◽  
D. N. Schmidt ◽  
E. J. Rayfield

Abstract. Coralline algae are important habitat formers found on all rocky shores. While the impact of future ocean acidification on the physiological performance of the species has been well studied, little research has focused on potential changes in structural integrity in response to climate change. A previous study using 2-D Finite Element Analysis (FEA) suggested increased vulnerability to fracture (by wave action or boring) in algae grown under high CO2 conditions. To assess how realistically 2-D simplified models represent structural performance, a series of increasingly biologically accurate 3-D FE models that represent different aspects of coralline algal growth were developed. Simplified geometric 3-D models of the genus Lithothamnion were compared to models created from computed tomography (CT) scan data of the same genus. The biologically accurate model and the simplified geometric model representing individual cells had similar average stresses and stress distributions, emphasising the importance of the cell walls in dissipating the stress throughout the structure. In contrast models without the accurate representation of the cell geometry resulted in larger stress and strain results. Our more complex 3-D model reiterated the potential of climate change to diminish the structural integrity of the organism. This suggests that under future environmental conditions the weakening of the coralline algal skeleton along with increased external pressures (wave and bioerosion) may negatively influence the ability for coralline algae to maintain a habitat able to sustain high levels of biodiversity.


2019 ◽  
Vol 9 (23) ◽  
pp. 5258
Author(s):  
Fang Wang ◽  
Mian Wu ◽  
Genqi Tian ◽  
Zhe Jiang ◽  
Shun Zhang ◽  
...  

A flat cover of an adjustable ballast tank made of high-strength maraging steel used in deep-sea submersibles collapsed during the loading process of external pressure in the high-pressure chamber. The pressure was high, which was the trigger of the collapse, but still considerably below the design limit of the adjustable ballast tank. The failure may have been caused by material properties that may be defective, the possible stress concentration resulting from design/processing, or inappropriate installation method. The present paper focuses on the visual inspections of the material inhomogeneity, ultimate cause of the collapse of the flat cover in pressure testing, and finite element analysis. Special attention is paid to the toughness characteristics of the material. The present study demonstrates the importance of material selection for engineering components based on the comprehensive properties of the materials.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 808
Author(s):  
Mattia Pesenti ◽  
Alberto Antonietti ◽  
Marta Gandolla ◽  
Alessandra Pedrocchi

While the research interest for exoskeletons has been rising in the last decades, missing standards for their rigorous evaluation are potentially limiting their adoption in the industrial field. In this context, exoskeletons for worker support have the aim to reduce the physical effort required by humans, with dramatic social and economic impact. Indeed, exoskeletons can reduce the occurrence and the entity of work-related musculoskeletal disorders that often cause absence from work, resulting in an eventual productivity loss. This very urgent and multifaceted issue is starting to be acknowledged by researchers. This article provides a systematic review of the state of the art for functional performance evaluation of low-back exoskeletons for industrial workers. We report the state-of-the-art evaluation criteria and metrics used for such a purpose, highlighting the lack of a standard for this practice. Very few studies carried out a rigorous evaluation of the assistance provided by the device. To address also this topic, the article ends with a proposed framework for the functional validation of low-back exoskeletons for the industry, with the aim to pave the way for the definition of rigorous industrial standards.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saurabhi Samant ◽  
Wei Wu ◽  
Shijia Zhao ◽  
Behram Khan ◽  
Mohammadali Sharzehee ◽  
...  

AbstractLeft main (LM) coronary artery bifurcation stenting is a challenging topic due to the distinct anatomy and wall structure of LM. In this work, we investigated computationally and experimentally the mechanical performance of a novel everolimus-eluting stent (SYNERGY MEGATRON) purpose-built for interventions to large proximal coronary segments, including LM. MEGATRON stent has been purposefully designed to sustain its structural integrity at higher expansion diameters and to provide optimal lumen coverage. Four patient-specific LM geometries were 3D reconstructed and stented computationally with finite element analysis in a well-validated computational stent simulation platform under different homogeneous and heterogeneous plaque conditions. Four different everolimus-eluting stent designs (9-peak prototype MEGATRON, 10-peak prototype MEGATRON, 12-peak MEGATRON, and SYNERGY) were deployed computationally in all bifurcation geometries at three different diameters (i.e., 3.5, 4.5, and 5.0 mm). The stent designs were also expanded experimentally from 3.5 to 5.0 mm (blind analysis). Stent morphometric and biomechanical indices were calculated in the computational and experimental studies. In the computational studies the 12-peak MEGATRON exhibited significantly greater expansion, better scaffolding, smaller vessel prolapse, and greater radial strength (expressed as normalized hoop force) than the 9-peak MEGATRON, 10-peak MEGATRON, or SYNERGY (p < 0.05). Larger stent expansion diameters had significantly better radial strength and worse scaffolding than smaller stent diameters (p < 0.001). Computational stenting showed comparable scaffolding and radial strength with experimental stenting. 12-peak MEGATRON exhibited better mechanical performance than the 9-peak MEGATRON, 10-peak MEGATRON, or SYNERGY. Patient-specific computational LM stenting simulations can accurately reproduce experimental stent testing, providing an attractive framework for cost- and time-effective stent research and development.


Author(s):  
Changyu Zhou ◽  
Bo Wang ◽  
Zhigang Sun ◽  
Jilin Xue ◽  
Xiaohua He

High temperature pressure pipes are widely used in power stations, nuclear power plants, and petroleum refinery, which always bear combined effects of high temperature, high pressure, and corrosive media, so the local pits are the most common volume defects in pressure pipe. Due to various reasons, the defects usually appear on the internal or external wall of pipe. In this paper, the dimensions of a defect were characterized as three dimensionless factors: relative depth, relative gradient and relative length. The main objects of study were the pipe with an internal pit and pipe with an external pit. Orthogonal array testing of three factors at four different levels was applied to analyze the sequence of the influence of three parameters. In present study, when the maximum principal strain nearby the location of the defects reaches 2%, the corresponding load is defined as the limit load, which is classified as two kinds of load type: limit pressure and limit bending moment. According to this strain criterion and isochronous stress strain data of P91 steel, the limit load of high temperature pipe with a local pit was determined by using ABAQUS. And in the same load condition of the pipe with the same dimensionless factors, the limit load of the internal defected pipe was compared with that of the external defected pipe. The results of this study can provide a reference for safety assessment and structural integrity analysis of high temperature creep pressure pipe with pit defects.


Sign in / Sign up

Export Citation Format

Share Document