Low-Cost Development Plan Optimization for a Polish Oil Field

2021 ◽  
Author(s):  
Daniel Podsobinski ◽  
Roman Madatov ◽  
Bartlomiej Kawecki ◽  
Grzegorz Paliborek ◽  
Piotr Wójcik ◽  
...  

Abstract In Poland there are approximately 60 oil fields located in different geological structures. Most of these fields have been producing for several years to several dozen years, and now require redefining of the development plan by utilizing an improved oil recovery (IOR) or enhanced oil recovery (EOR) method to achieve a higher oil recovery factor. Here we present the redevelopment plan for the Polish Main Dolomite oil field, that aimed to optimize and maximize the oil recovery factor. Considering all available geological and reservoir data, both a static and dynamic model were built and calibrated for three separate reservoirs connected to the same production facility. Then the comprehensive study was performed where different development scenarios was considered and tested using reservoir numerical simulation. The proposed redevelopment scenarios included excessive gas reinjection to the main reservoir, additional high-nitrogen (N2) gas injection from a nearby gas reservoir (87% of N2), carbon dioxide (CO2) injection, water injection, polymer injection, water-alternating-gas (WAG), well stimulation, and a combination of these methods. Development plans assumes also drilling new injection and production wells and converting existing producers to gas or water injectors. The key component in development scenarios was to arrest the pressure decline from the main field and decrease the gas/oil ratio (GOR). An additional challenge was to implement in the simulation model all key assumptions behind various development scenarios, while also taking into account specific facility constraints and simultaneously handling separate reservoirs that are connected to the same facility, and hence affecting each other. From numerous scenarios, the scenario that requires the least number of new wells was selected and further optimized. It considers the drilling of only one new producer, one new water injector, and conversion of some currently producing wells to gas and water injectors. The location of the proposed well and the amount of injection fluids was optimized to achieve the highest oil recovery factor and to postpone gas and water breakthrough as much as possible. The optimized case that assumes low investments is expected to improve incremental oil production by 90% over No Further Actions Scenario. However, the study suggests the potential of more than tripling incremental oil production under a scenario with considerably higher expenditures. The improved case assumes drilling one more producer, four new water injectors, and injection of three times more water. The presented field optimization example highlights that in many existing Polish oil fields there is still a potential to reach higher oil recovery without considerable expenditures. However, to obtain more significant oil recovery improvement, higher capital expenditure is necessary. To facilitate the selection of the best development scenario, a detailed economic and risk analysis needs to be conducted.

2019 ◽  
Vol 42 (1) ◽  
pp. 9-14
Author(s):  
Muslim Abdurrahman ◽  
Fiki H. Ferizal ◽  
Dadan D.S.M. Saputra ◽  
Riri P. Sari

Oil and gas industry is struggling to improve oil production using several methods. CO2 injection is one of the advance proven technology to enhance oil production in numerous oil field in the world. Key parameters during CO2 injection are viscosity reduction and oil swelling which can improve oil production. CO2 injection also has high possibility to be applied in Indonesia's oil fields due to abundant CO2 sources surrounding oil fields. R field is one of reservoir candidates that appropriate for CO2 injection. It has a low pressure and low oil recovery due to low permeability (1-26,2 mD).The CO2 injection technique used in this study was huff and puff that consist of injection, shut in, and production phases. The simulation was conducted using compositional simulator. There were two parameters chosen to be analyzed, which were soaking time and injection cycle. The objective of this study is to know the CO2 huff and puff perfomance for improving oil recovery on low permeability reservoir. The result of the soaking time cases yields optimum condition in 21 days. For the case of injection cycle, the result for optimum condition is in 2 injection cycles. The recovery factor (RF) for both optimum condition reaches 22.96% from the baseline without gas injection (RF 5.82%).


2021 ◽  
Author(s):  
Khadijah Ibrahim ◽  
Petrus Nzerem ◽  
Ayuba Salihu ◽  
Ikechukwu Okafor ◽  
Oluwaseun Alonge ◽  
...  

Abstract The development plan of the new oil field discovered in a remote offshore environment, Niger Delta, Nigeria was evaluated. As the oil in place is uncertain, a probabilistic approach was used to estimate the STOOIP using the low, mid, and high cases. The STOOIP for these cases were 95 MMSTB, 145 MMSTB and 300 MMSTB which are the potential amount of oil in the reservoir. Rock and fluid properties were determined using PVT sample and then matched to the Standing correlations with an RMS of 4.93%. The performance of the different well models were analyzed, and sensitivities were run to provide detailed information to reduce the uncertainties of the parameters. Furthermore, production forecast was done for the field for the different STOOIP using the predicted number of producer and injector wells. The timing of the wells was accurately allocated to provide information for the drillers to work on the wells. From the production forecast, the different STOOIP cases had a water cut ranging from 68-73% at the end of the 15-year field life. The recoverable oil estimate was accounted for 33.25 MMSTB for 95 MMSTB (low), 55.1 MMSTB for 145 MMSTB (mid) and 135 MMSTB for 300 MMSTB (high) at 35%, 38% and 45% recovery factor. Based on the proposed development plan, the base model is recommended for further implementation as the recovery factor is 38% with an estimate of 55.1 MMSTB. The platform will have 6 producers and 2 injectors. The quantity of oil produced is estimated at 15000 stbo/day which will require a separator that has the capacity of hold a liquid rate of about 20000 stb/day. The developmental wells are subsequently increased to achieve a water cut of 90-95% with more recoverable oil within the 15-year field life. This developmental plan is also cost effective as drilling more wells means more capital expenditure.


2013 ◽  
Vol 53 (2) ◽  
pp. 489
Author(s):  
Reza Ardianto

Business management of oil and gas in Pertamina State Oil enterprises was handed to one of its subsidiaries: Pertamina EP (PEP). With a vast working area of 140,000 km2, it consists of 214 fields where 80% is an old field (mature field or brown field). Most of these oil fields were discovered during Dutch colonialism. One of these fields was Rantau oil field, discovered in 1928; it is considered one of potential structure at the time. Peak oil production was achieved at 31,711 barrels of oil per day (BOPD) (wc 17.2%) in 1969, and it is still producing 2,500 BOPD from primary stage.To get better recovery from the Rantau oil field, it is necessary to identify the potential of secondary recovery water-flooding. Some screening criteria had been completed to select an appropriate method that could be applied in the Rantau field. PEP is preparing an Enhanced Oil Recovery (EOR) program to be applied in some oil fields with subsurface and surface potential consideration. The implementation was initiated by the EOR Department at PEP. The issue of the national oil production increasing program from the government has to be realised by the EOR Department at Pertamina EP. Following the national oil increasing program, management of PEP urged to increase oil production in a rapid and realistic way. As a result, the program of secondary and tertiary recovery pilot project should be conducted simultaneously by the EOR Department on some of the fields that have passed their peak. On the other hand, PEP has only limited geology, geophysics, reservoir, and production (GGRP) data, and most of the oil fields have been producing since 1930s. The conditions that have to be dealt with are as follows: production from the existing field is declining, data is collected and interpreted during a long period, huge amounts of production data, and reservoir model and simulation do not exist and are not frequently updated. Based on this, the planning of EOR struggled due to length of time needed versus the need for quick development. It has become much more of a challenge for the team consisting of integrated geophysics, geology, reservoir, production, process facility, project management and economic evaluation. This extended abstract presents the term of managing limited GGRP data that contributes to the successful pilot waterflood project in the Rantau field. It also explains the uses of limited subsurface GGRP data to overcome the uncertainty for planning of the waterflood pilot project in the Rantau field, as a part of planning using limited data.


Author(s):  
Aditya Rachman ◽  
Rini Setiati ◽  
Kartika Fajarwati Hartono

<em>The majority of petroleum production comes from the brown field where production has decreased from year to year in Indonesia. To increase the recovery factor of petroleum from the reservoir, an advanced step of production is required, Enhanced Oil Recovery (EOR), which can optimize the depletion of old oil fields. EOR is the application of technology that requires cost, technology and high risk. Therefore, before implementing EOR, in a field, we must carefully evaluate both technically and economically to obtain an optimal additional recovery. This research was conducted to increase oil production by injection of Methyl Ester Sulfonate (MES). This study begins with a screening parameter crude oil, formation water, Berea’s core, and determination of phase behavior, interfacial tension (IFT), thermal stability, imbibition, and core flooding tests. The result for concentratin optimum in 0.3% MES and had IFT 0.3267 dyne/cm. The results of core flooding tests are: Recovery factor of waterflooding is 33.95 % and recovery factor of MES injection is 4.19 %.</em>


PETRO ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 52
Author(s):  
Ajeng Purna Putri Oktaviani ◽  
Leksono Mucharam

<em>Mature fields, also known as brownfields, are fields that are in a state of declining production or reaching the end of their production lives.  Development of mature oil fields has been, and will increasingly be, an exciting subject (Babadagli, 2007). New studies already discovered innovative ways of finding, developing, and producing hydrocarbons that are efficient and cost-effective and minimize harm to the environment. BJG Field is one of the mature fields which is produced in 1927, one of the efforts for enhancing the production is using waterflood at the beginning of 2001. To increase production further, then we need to conducted studies as an application of the second recovery from BJG Field. The oil recovery factor BJG field can be increased using a surfactant flooding scenario. This research aimed to conduct a study of dynamic pattern surfactant flooding using simulations as applicable for the mature field. The research is expected to obtain an optimum surfactant injection scenario using IMEX and STARS simulator. Simulation is done with real data from the BJG field, and the result has shown the scenario which has the most significant oil production. The highest recovery factor is the chosen scenario. From the results of studies and simulation shown that dynamic pattern inverted five-spot pattern can be used. The increment of oil recovery factor is 32.29% from the waterflood case.</em>


2021 ◽  
Author(s):  
Valentina Zharko ◽  
Dmitriy Burdakov

Abstract The paper presents the results of a pilot project implementing WAG injection at the oilfield with carbonate reservoir, characterized by low efficiency of traditional waterflooding. The objective of the pilot project was to evaluate the efficiency of this enhanced oil recovery method for conditions of the specific oil field. For the initial introduction of WAG, an area of the reservoir with minimal potential risks has been identified. During the test injections of water and gas, production parameters were monitored, including the oil production rates of the reacting wells and the water and gas injection rates of injection wells, the change in the density and composition of the produced fluids. With first positive results, the pilot area of the reservoir was expanded. In accordance with the responses of the producing wells to the injection of displacing agents, the injection rates were adjusted, and the production intensified, with the aim of maximizing the effect of WAG. The results obtained in practice were reproduced in the simulation model sector in order to obtain a project curve characterizing an increase in oil recovery due to water-alternating gas injection. Practical results obtained during pilot testing of the technology show that the injection of gas and water alternately can reduce the water cut of the reacting wells and increase overall oil production, providing more efficient displacement compared to traditional waterflooding. The use of WAG after the waterflooding provides an increase in oil recovery and a decrease in residual oil saturation. The water cut of the produced liquid decreased from 98% to 80%, an increase in oil production rate of 100 tons/day was obtained. The increase in the oil recovery factor is estimated at approximately 7.5% at gas injection of 1.5 hydrocarbon pore volumes. Based on the received results, the displacement characteristic was constructed. Methods for monitoring the effectiveness of WAG have been determined, and studies are planned to be carried out when designing a full-scale WAG project at the field. This project is the first pilot project in Russia implementing WAG injection in a field with a carbonate reservoir. During the pilot project, the technical feasibility of implementing this EOR method was confirmed, as well as its efficiency in terms of increasing the oil recovery factor for the conditions of the carbonate reservoir of Eastern Siberia, characterized by high water cut and low values of oil displacement coefficients during waterflooding.


2021 ◽  
Author(s):  
Hung Vo Thanh ◽  
Kang-Kun Lee

Abstract Basement formation is known as the unique reservoir in the world. The fractured basement reservoir was contributed a large amount of oil and gas for Vietnam petroleum industry. However, the geological modelling and optimization of oil production is still a challenge for fractured basement reservoirs. Thus, this study aims to introduce the efficient workflow construction reservoir models for proposing the field development plan in a fractured crystalline reservoir. First, the Halo method was adapted for building the petrophysical model. Then, Drill stem history matching is conducted for adjusting the simulation results and pressure measurement. Next, the history-matched models are used to conduct the simulation scenarios to predict future reservoir performance. The possible potential design has four producers and three injectors in the fracture reservoir system. The field prediction results indicate that this scenario increases approximately 8 % oil recovery factor compared to the natural depletion production. This finding suggests that a suitable field development plan is necessary to improve sweep efficiency in the fractured oil formation. The critical contribution of this research is the proposed modelling and simulation with less data for the field development plan in fractured crystalline reservoir. This research's modelling and simulation findings provide a new solution for optimizing oil production that can be applied in Vietnam and other reservoirs in the world.


2021 ◽  
pp. 86-98
Author(s):  
V. Yu. Ogoreltsev ◽  
S. A. Leontiev ◽  
A. S. Drozdov

When developing hard-to-recover reserves of oil fields, methods of enhanced oil recovery, used from chemical ones, are massively used. To establish the actual oil-washing characteristics of surfactant grades accepted for testing in the pore space of oil-containing reservoir rocks, a set of laboratory studies was carried out, including the study of molecular-surface properties upon contact of oil from the BS10 formation of the West Surgutskoye field and model water types with the addition of surfactants of various concentrations, as well as filtration tests of surfactant technology compositions on core models of the VK1 reservoir of the Rogozhnikovskoye oil field. On the basis of the performed laboratory studies of rocks, it has been established that conducting pilot operations with the use of Neonol RHP-20 will lead to higher technological efficiency than from the currently used at the company's fields in the compositions of the technologies of physical and chemical EOR Neonol BS-1 and proposed for application of Neftenol VKS, Aldinol-50 and Betanol.


2008 ◽  
Vol 11 (04) ◽  
pp. 778-791 ◽  
Author(s):  
Secaeddin Sahin ◽  
Ulker Kalfa ◽  
Demet Celebioglu

Summary The Bati Raman field is the largest oil field in Turkey and contains approximately 1.85 billion bbl of oil initially in place. The oil is heavy (12°API), with high viscosity and low solution-gas content. Primary recovery was less than 2% of oil originally in place (OOIP). Over the period of primary recovery (1961-86), the reservoir underwent extensive pressure depletion from 1,800 psig to as low as 400 psig in some regions, resulting in a production decline from 9,000 to 1,600 STB/D. In March 1986, a carbon-dioxide (CO2) -injection pilot in a 1,200-acre area containing 33 wells was initiated in the western portion of the field. The gas-injection was initially cyclic. In 1988, the gas injection scheme was converted to a CO2-flood process. Later, the process was extended to cover the whole field. A peak daily production rate of 13,000 STB/D was achieved, whereas rate would have been less than 1,600 STB/D without CO2 application. However, the field has undergone a progressive production decline since 1995to recent levels of approximately 5,500 STB/D. Polymer-gel treatments were carried out to increase the CO2 sweep efficiency. Multilateral- and horizontal-well technology also was applied on a pilot scale to reach the bypassed oil. A water-alternating-gas (WAG) application has been applied extensively in the western part of the field. Current production is 7,000 STB/D. This paper documents more than 25 years of experience of the Turkish Petroleum Corporation (TPAO) on the design and operation of this full-field immiscible CO2-injection project conducted in the Bati Raman oil field in Turkey. The objective is to update the current status report, update the reservoir/field problems that TPAO has encountered (unpredictable problems and results), and provide a critical evaluation of the success of the project. Introduction The Bati Raman field is the biggest oil accumulation in Turkey and is operated by TPAO. It contains very viscous and low-API-gravity oil in a very challenging geological environment. Because of the fact that the recovery factor by primary recovery was limited, several enhanced-oil-recovery (EOR) techniques had been proposed and tested at the pilot level in the 1970s and 1980s. On the basis of the success of the laboratory tests and the vast amount of CO2 available in a neighboring field, which is only 55 miles away from the Bati Raman field, huff ‘n’ puff injection was started in the early 1980s. Because of the early breakthrough of CO2 in offset wells in a short period of time, the project was converted to field-scale random-pattern continuous injection. During more than 20 years of injection, the recovery peaked at approximately 13,000 STB/D and began to decline, reaching today's value of approximately 7,000 STB/D. In the case of Bati Raman, in its mature, the injected agent is bypassing the remaining oil and production is curtailed by excessively high gas/oil ratios (GORs). The naturally fractured character of the reservoir rock has been a challenge for establishing successful 3D conformance from the beginning, and its impact is even more pronounced in the later stages of the process. Therefore, the field requires modifications in the reservoir-management scheme to improve the recovery factor and to improve productivity of the current wells.


2015 ◽  
Vol 33 (4) ◽  
pp. 459-470 ◽  
Author(s):  
Vahid Ghorbani Pashakolaie ◽  
Shahla Khaleghi ◽  
Teymor Mohammadi ◽  
Morteza Khorsandi

Sign in / Sign up

Export Citation Format

Share Document