scholarly journals Neural Responses to Facial Attractiveness in the Judgments of Moral Goodness and Moral Beauty

Author(s):  
Qiuping Cheng ◽  
Zhili Han ◽  
Shun Liu ◽  
Yilong Kong ◽  
Xuchu Weng ◽  
...  

Abstract The judgments of moral goodness and moral beauty objectively refer to the perception and evaluation of moral traits, which are generally influenced by facial attractiveness. For centuries, people have equated beauty with the possession of positive qualities, but it is not clear whether the association between beauty and positive qualities exerts a similarly implicit influence on people`s responses to moral goodness and moral beauty, how it affects those responses, and what is the neural basis for such an effect. The present study is the first to examine the neural responses to facial attractiveness in the judgments of moral goodness and moral beauty. We found that beautiful faces in both moral judgments activated the left ventral occipitotemporal cortices sensitive to the geometric configuration of the faces, demonstrating that both moral goodness and moral beauty required the automatic visual analysis of geometrical configuration of attractive faces. In addition, compared to beautiful faces during moral goodness judgment, beautiful faces during moral beauty judgment induced unique activity in the ventral medial prefrontal cortex and midline cortical structures involved in the emotional-valenced information about attractive faces. The opposite comparison elicited specific activity in the left superior temporal cortex and premotor area, which play a critical role in the recognition of facial identity. Our results demonstrated that the neural responses to facial attractiveness in the process of higher order moral decision-makings exhibits both task-general and task-specific characteristics. Our findings contribute to the understanding of the essence of the relationship between morality and aesthetics.

Author(s):  
Qiuping Cheng ◽  
Zhili Han ◽  
Shun Liu ◽  
Yilong Kong ◽  
Xuchu Weng ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xuan Cui ◽  
Qiuping Cheng ◽  
Wuji Lin ◽  
Jiabao Lin ◽  
Lei Mo

2017 ◽  
Vol 29 (4) ◽  
pp. 664-676 ◽  
Author(s):  
Clara Colombatto ◽  
Gregory McCarthy

Research about the neural basis of face recognition has investigated the timing and anatomical substrates of different stages of face processing. Scalp-recorded ERP studies of face processing have focused on the N170, an ERP with a peak latency of ∼170 msec that has long been associated with the initial structural encoding of faces. However, several studies have reported earlier ERP differences related to faces, suggesting that face-specific processes might occur before N170. Here, we examined the influence of face inversion and face race on the timing of face-sensitive scalp-recorded ERPs by examining neural responses to upright and inverted line-drawn and luminance-matched white and black faces in a sample of white participants. We found that the P100 ERP evoked by inverted faces was significantly larger than that evoked by upright faces. Although this inversion effect was statistically significant at 100 msec, the inverted-upright ERP difference peaked at 138 msec, suggesting that it might represent an activity in neural sources that overlap with P100. Inverse modeling of the inversion effect difference waveform suggested possible neural sources in pericalcarine extrastriate visual cortex and lateral occipito-temporal cortex. We also found that the inversion effect difference wave was larger for white faces. These results are consistent with behavioral evidence that individuals process the faces of their own races more configurally than faces of other races. Taken together, the inversion and race effects observed in the current study suggest that configuration influences face processing by at least 100 msec.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xuan Cui ◽  
Qiuping Cheng ◽  
Wuji Lin ◽  
Jiabao Lin ◽  
Lei Mo

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael Pereira ◽  
Pierre Megevand ◽  
Mi Xue Tan ◽  
Wenwen Chang ◽  
Shuo Wang ◽  
...  

AbstractA fundamental scientific question concerns the neural basis of perceptual consciousness and perceptual monitoring resulting from the processing of sensory events. Although recent studies identified neurons reflecting stimulus visibility, their functional role remains unknown. Here, we show that perceptual consciousness and monitoring involve evidence accumulation. We recorded single-neuron activity in a participant with a microelectrode in the posterior parietal cortex, while they detected vibrotactile stimuli around detection threshold and provided confidence estimates. We find that detected stimuli elicited neuronal responses resembling evidence accumulation during decision-making, irrespective of motor confounds or task demands. We generalize these findings in healthy volunteers using electroencephalography. Behavioral and neural responses are reproduced with a computational model considering a stimulus as detected if accumulated evidence reaches a bound, and confidence as the distance between maximal evidence and that bound. We conclude that gradual changes in neuronal dynamics during evidence accumulation relates to perceptual consciousness and perceptual monitoring in humans.


2020 ◽  
Vol 287 (1923) ◽  
pp. 20192765 ◽  
Author(s):  
Tabashir Chowdhury ◽  
Ryan M. Calhoun ◽  
Katrina Bruch ◽  
Amanda J. Moehring

Female mate rejection acts as a major selective force within species, and can serve as a reproductive barrier between species. In spite of its critical role in fitness and reproduction, surprisingly little is known about the genetic or neural basis of variation in female mate choice. Here, we identify fruitless as a gene affecting female receptivity within Drosophila melanogaster , as well as female Drosophila simulans rejection of male D. melanogaster . Of the multiple transcripts this gene produces, by far the most widely studied is the sex-specifically spliced transcript involved in the sex determination pathway. However, we find that female rejection behaviour is affected by a non-sex-specifically spliced fruitless transcript. This is the first implication of fruitless in female behaviour, and the first behavioural role identified for a fruitless non-sex-specifically spliced transcript. We found that this locus does not influence preferences via a single sensory modality, examining courtship song, antennal pheromone perception, or perception of substrate vibrations, and we conclude that fruitless influences mate choice via the integration of multiple signals or through another sensory modality.


2013 ◽  
Vol 51 (11) ◽  
pp. 2245-2250 ◽  
Author(s):  
J.M. Nazimek ◽  
M.D. Hunter ◽  
R. Hoskin ◽  
I. Wilkinson ◽  
P.W. Woodruff
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suhail Matar ◽  
Julien Dirani ◽  
Alec Marantz ◽  
Liina Pylkkänen

AbstractDuring language comprehension, the brain processes not only word meanings, but also the grammatical structure—the “syntax”—that strings words into phrases and sentences. Yet the neural basis of syntax remains contentious, partly due to the elusiveness of experimental designs that vary structure independently of meaning-related variables. Here, we exploit Arabic’s grammatical properties, which enable such a design. We collected magnetoencephalography (MEG) data while participants read the same noun-adjective expressions with zero, one, or two contiguously-written definite articles (e.g., ‘chair purple’; ‘the-chair purple’; ‘the-chair the-purple’), representing equivalent concepts, but with different levels of syntactic complexity (respectively, indefinite phrases: ‘a purple chair’; sentences: ‘The chair is purple.’; definite phrases: ‘the purple chair’). We expected regions processing syntax to respond differently to simple versus complex structures. Single-word controls (‘chair’/‘purple’) addressed definiteness-based accounts. In noun-adjective expressions, syntactic complexity only modulated activity in the left posterior temporal lobe (LPTL), ~ 300 ms after each word’s onset: indefinite phrases induced more MEG-measured positive activity. The effects disappeared in single-word tokens, ruling out non-syntactic interpretations. In contrast, left anterior temporal lobe (LATL) activation was driven by meaning. Overall, the results support models implicating the LPTL in structure building and the LATL in early stages of conceptual combination.


2012 ◽  
Vol 24 (1) ◽  
pp. 212-222 ◽  
Author(s):  
Malathi Thothathiri ◽  
Daniel Y. Kimberg ◽  
Myrna F. Schwartz

We explored the neural basis of reversible sentence comprehension in a large group of aphasic patients (n = 79). Voxel-based lesion symptom mapping revealed a significant association between damage in temporo-parietal cortex and impaired sentence comprehension. This association remained after we controlled for phonological working memory. We hypothesize that this region plays an important role in the thematic or what–where processing of sentences. In contrast, we detected weak or no association between reversible sentence comprehension and the ventrolateral pFC, which includes Broca's area, even for syntactically complex sentences. This casts doubt on theories that presuppose a critical role for this region in syntactic computations.


Author(s):  
Lauren Stewart ◽  
Katharina von Kriegstein ◽  
Simone Dalla Bella ◽  
Jason D. Warren ◽  
Timothy D. Griffiths

This article presents an overview of case studies of acquired disorders of musical listening. Like any cognitive faculty, music is multifaceted, and the identification of the neural basis of any complex faculty must proceed, hand in hand, with an elucidation of its cognitive architecture. The past decade has seen an evolution in the theoretical models of musical processing, allowing the development of theoretically motivated instruments for the systematic evaluation of musical disorders. Such developments have allowed reports of musical disorders to evolve from historical anecdotes to systematic, verifiable accounts that can play a critical role in contributing to our understanding of the cognitive neuroscience of music.


Sign in / Sign up

Export Citation Format

Share Document