scholarly journals Nanozyme-Natural Enzymes Cascade Catalyze Cholesterol Consumption and Reverse Cancer Multidrug Resistance

Author(s):  
Bin Du ◽  
Mei Zheng ◽  
Jingshu Huang ◽  
Qingqing Jiao ◽  
Yimeng Bai ◽  
...  

Abstract Multidrug resistance is still a major obstacle to cancer treatment. The most studies are to inhibit the activity of the drug transporter P-glycoprotein (P-gp), but the effect is not ideal. Herein, a nanosystem was built based on cascade catalytic consumption of cholesterol. Cholesterol oxidase (natural enzyme, COD) was immobilized on the carrier (NH2-MIL-88B, MOF) through amide reaction, COD catalyzed the consumption of cholesterol, the reaction product H2O2 was further produced by the MOF with its peroxidase-like activity to produce hydroxyl radicals (•OH) with killing effect. Due to the high expression of CD44 receptor on the surface of tumor cells, we encapsulated chondroitin sulfate gel shell (CS-shell) with CD44 targeting and apoptosis promoting effect on the surface of DOX@MOF-COD nanoparticles, which can accurately and efficiently deliver the drugs to the tumor site and improve the effect of reversing drug resistance. Taking drug-resistant cell membrane as "breakthrough", this paper will provide a new idea for reversing multidrug resistance of tumor.

Antioxidants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 303 ◽  
Author(s):  
Jitka Viktorová ◽  
Simona Dobiasová ◽  
Kateřina Řehořová ◽  
David Biedermann ◽  
Kristýna Káňová ◽  
...  

Silychristin A is the second most abundant compound of silymarin. Silymarin complex was previously described as an antioxidant with multidrug resistance modulation activity. Here, the results of a classical biochemical antioxidant assay (ORAC) were compared with a cellular assay evaluating the antioxidant capacity of pure silychristin A and its derivatives (anhydrosilychristin, isosilychristin and 2,3-dehydrosilychristin A). All the tested compounds acted as antioxidants within the cells, but 2,3-dehydro- and anhydro derivatives were almost twice as potent as the other tested compounds. Similar results were obtained in LPS-stimulated macrophages, where 2,3-dehydro- and anhydrosilychristin inhibited NO production nearly twice as efficiently as silychristin A. The inhibition of P-glycoprotein (P-gp) was determined in vitro, and the respective sensitization of doxorubicin-resistant ovarian carcinoma overproducing P-gp was detected. Despite the fact that the inhibition of P-gp was demonstrated in a concentration-dependent manner for each tested compound, the sensitization of the resistant cell line was observed predominantly for silychristin A and 2,3-dehydrosilychristin A. However, anhydrosilychristin and isosilychristin affected the expression of both the P-gp (ABCB1) and ABCG2 genes. This is the first report showing that silychristin A and its 2,3-dehydro-derivative modulate multidrug resistance by the direct inhibition of P-gp, in contrast to anhydrosilychristin and isosilychristin modulating multidrug resistance by downregulating the expression of the dominant transmembrane efflux pumps.


2019 ◽  
Vol 442 ◽  
pp. 91-103 ◽  
Author(s):  
Albert A. De Vera ◽  
Pranav Gupta ◽  
Zining Lei ◽  
Dan Liao ◽  
Silpa Narayanan ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-rui Sun ◽  
Qiu-shi Guo ◽  
Wei Zhou ◽  
Min Li

AbstractChinese herbal medicine is widely used because it has a good safety profile and few side effects. However, the risk of adverse drug reactions caused by herb-drug interactions (HDIs) is often overlooked. Therefore, the task of identifying possible HDIs and elucidating their mechanisms is of great significance for the prevention and treatment of HDI-related adverse reactions. Since extract from Dioscorea bulbifera L. rhizomes (DB) can cause various degrees of liver damage, it is speculated that HDIs may occur between DB extract and chemicals metabolized or excreted by the liver. Our study revealed that the cardiotoxicity of pirarubicin (THP) was increased by co-administration of DB, and the expression of P-glycoprotein (P-gp) and multidrug resistance-associated protein 2 (Mrp2) in the liver was inhibited by DB extract, which led to the accumulation of THP in heart tissue. In conclusion, there are risks of the co-administration of DB extract and THP. The mechanism of HDIs can be better revealed by targeting the efflux transporters.


1987 ◽  
Vol 7 (2) ◽  
pp. 718-724
Author(s):  
K L Deuchars ◽  
R P Du ◽  
M Naik ◽  
D Evernden-Porelle ◽  
N Kartner ◽  
...  

The overexpression of a plasma membrane glycoprotein, P-glycoprotein, is strongly correlated with the expression of multidrug resistance. This phenotype (frequently observed in cell lines selected for resistance to a single drug) is characterized by cross resistance to many drugs, some of which are used in cancer chemotherapy. In the present study we showed that DNA-mediated transformants of mouse LTA cells with DNA from multidrug-resistant hamster cells acquired the multidrug resistance phenotype, that the transformants contained hamster P-glycoprotein DNA sequences, that these sequences were amplified whereas the recipient mouse P-glycoprotein sequences remained at wild-type levels, and that the overexpressed P-glycoprotein in these cells was of hamster origin. Furthermore, we showed that the hamster P-glycoprotein sequences were transfected independently of a group of genes that were originally coamplified and linked within a 1-megabase-pair region in the donor hamster genome. These data indicate that the high expression of P-glycoprotein is the only alteration required to mediate multidrug resistance.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 593 ◽  
Author(s):  
Jaeok Lee ◽  
Song Wha Chae ◽  
LianJi Ma ◽  
So Yeon Lim ◽  
Sarah Alnajjar ◽  
...  

P-glycoprotein (P-gp) is known to be involved in multidrug resistance (MDR) and modulation of pharmacokinetic (PK) profiles of substrate drugs. Here, we studied the effects of synthesized ferulic acid (FA) derivatives on P-gp function in vitro and examined PK alteration of paclitaxel (PTX), a well-known P-gp substrate drug by the derivative. Compound 5c, the FA derivative chosen as a significant P-gp inhibitor among eight FA candidates by in vitro results, increased PTX AUCinf as much as twofold versus the control by reducing PTX elimination in rats. These results suggest that FA derivative can increase PTX bioavailability by inhibiting P-gp existing in eliminating organs.


2020 ◽  
Vol 52 (11) ◽  
pp. 1202-1214
Author(s):  
Lejia Qiu ◽  
Zhaoxia Ma ◽  
Xiaoran Li ◽  
Yizhang Deng ◽  
Guangling Duan ◽  
...  

Abstract Gastric cancer is a common malignancy worldwide. The occurrence of multidrug resistance (MDR) is the major obstacle for effective gastric cancer chemotherapy. In this study, the in-depth molecular mechanism of the DJ-1-induced MDR in SGC7901 gastric cancer cells was investigated. The results showed that DJ-1 expression level was higher in MDR variant SGC7901/VCR cells than that in its parental SGC7901 cells. Moreover, DJ-1 overexpression conferred the MDR phenotype to SGC7901 cells, while DJ-1 knockdown in SGC7901/VCR cells induced re-sensitization to adriamycin, vincristine, cisplatin, and 5-fluorouracil. These results suggested that DJ-1 mediated the development of MDR in SGC7901 gastric cancer cells. Importantly, further data revealed that the activation of PI3k/Akt and Nrf2 signaling pathway were required for the DJ-1-induced MDR phenotype in SGC7901 gastric cancer cells. Meanwhile, we found that PI3k/Akt pathway was activated probably through DJ-1 directly binding to and negatively regulating PTEN, consequently resulting in Nrf2 phosphorylation and activation, and thereby inducing Nrf2-dependent P-glycoprotein (P-gp) and Bcl-2 expressions in the DJ-1-mediated MDR of SGC7901 gastric cancer cells. Overall, these results revealed that activating PTEN/PI3K/Akt/Nrf2 pathway and subsequently upregulating P-gp and Bcl-2 expression could be a critical mechanism by which DJ-1 mediates the development of MDR in SGC7901 gastric cancer cells. The new findings may be helpful for understanding the mechanisms of MDR in gastric cancer cells, prompting its further investigation as a molecular target to overcome MDR.


Blood ◽  
1992 ◽  
Vol 79 (2) ◽  
pp. 473-476 ◽  
Author(s):  
L Campos ◽  
D Guyotat ◽  
E Archimbaud ◽  
P Calmard-Oriol ◽  
T Tsuruo ◽  
...  

Abstract To evaluate the clinical value of the expression of multidrug resistance P-glycoprotein (P-170) on the surface of acute nonlymphoblastic leukemia (ANLL) cells, we analyzed specimens from 150 newly diagnosed patients for staining with MRK16, a monoclonal antibody (MoAb) that binds to an external epitope of P-170. Other surface markers (CD13, CD14, CD15, and CD34) were studied by the same technique. A marker was considered positive when 20% or more cells were stained. Of 150 samples, 71 were P-170-positive. These cases did not differ from P-170-negative cases with regard to age, sex, initial white blood cell (WBC) counts, or French-American-British (FAB) type (except for M3 ANLL, which were more frequently negative). However, leukemias arising from previous myelodysplastic syndrome (MDS) and therapy- induced leukemias were more frequently P-170-positive. CD34 and P-170 expression were significantly associated. All patients were treated by intensive chemotherapy. Complete remission (CR) rates were significantly lower in P-170-positive (23/71, 32%) than in P-170- negative cases (64/79, 81%) (P less than 10(-5)). CD34 positivity was also associated with a low remission rate (P less than 10(-5)). Survival was shorter for P-170- and CD34-positive patients (P less than 10(-5)). The prognostic value of both markers was confirmed in multivariate analysis. CR duration was also shorter for P-170-positive cases, but the difference is less significant (P = .05). It is concluded that P-170 analysis may be an important tool for predicting the outcome of intensive chemotherapy in ANLL patients.


Blood ◽  
1992 ◽  
Vol 79 (2) ◽  
pp. 473-476 ◽  
Author(s):  
L Campos ◽  
D Guyotat ◽  
E Archimbaud ◽  
P Calmard-Oriol ◽  
T Tsuruo ◽  
...  

To evaluate the clinical value of the expression of multidrug resistance P-glycoprotein (P-170) on the surface of acute nonlymphoblastic leukemia (ANLL) cells, we analyzed specimens from 150 newly diagnosed patients for staining with MRK16, a monoclonal antibody (MoAb) that binds to an external epitope of P-170. Other surface markers (CD13, CD14, CD15, and CD34) were studied by the same technique. A marker was considered positive when 20% or more cells were stained. Of 150 samples, 71 were P-170-positive. These cases did not differ from P-170-negative cases with regard to age, sex, initial white blood cell (WBC) counts, or French-American-British (FAB) type (except for M3 ANLL, which were more frequently negative). However, leukemias arising from previous myelodysplastic syndrome (MDS) and therapy- induced leukemias were more frequently P-170-positive. CD34 and P-170 expression were significantly associated. All patients were treated by intensive chemotherapy. Complete remission (CR) rates were significantly lower in P-170-positive (23/71, 32%) than in P-170- negative cases (64/79, 81%) (P less than 10(-5)). CD34 positivity was also associated with a low remission rate (P less than 10(-5)). Survival was shorter for P-170- and CD34-positive patients (P less than 10(-5)). The prognostic value of both markers was confirmed in multivariate analysis. CR duration was also shorter for P-170-positive cases, but the difference is less significant (P = .05). It is concluded that P-170 analysis may be an important tool for predicting the outcome of intensive chemotherapy in ANLL patients.


1985 ◽  
Vol 3 (3) ◽  
pp. 311-315 ◽  
Author(s):  
D R Bell ◽  
J H Gerlach ◽  
N Kartner ◽  
R N Buick ◽  
V Ling

A multidrug resistance phenotype is frequently observed in animal and human cell lines selected for in vitro resistance to a single chemotherapeutic agent. Overexpression of a highly conserved cell-surface glycoprotein (P-glycoprotein) is consistently associated with this phenotype in these mutant lines. A monoclonal antibody against P-glycoprotein was used to examine tumor samples from five patients with advanced ovarian cancer for evidence of P-glycoprotein overexpression. High levels of P-glycoprotein were detected in samples from two patients suggesting that a multidrug resistance mutation may also occur in ovarian cancer. This finding has broad implications for the understanding of nonresponse to chemotherapy in a variety of human neoplasms, and may provide a rational explanation for failure of chemotherapy in treatment of advanced ovarian cancer.


Sign in / Sign up

Export Citation Format

Share Document