scholarly journals Diversity Analysis of Soil Microbial Population Abundance Before and After Planting JunCao "Oasis No. 1" in Saline-Alkali Soil

Author(s):  
ZhiQi Xiao ◽  
ZhanXi Lin

Abstract In order to explore the difference of soil microbial population structure and abundance before and after planting JunCao"Oasis No. 1" in saline-alkali soil, verify the improvement effect of JunCao"Oasis No. 1" on microbial population structure and abundance in saline-alkali soil. Samples were collected from the blank saline area with and without JunCao"Oasis NO.1" and no plant growth on the surface, respectively, as Experimental group soil samples (S.Y.1-S.Y.8) and Blank group soil samples (K.B.1-K.B.8).16sDNA high-throughput sequencing technology was used for sequencing analysis respectively, and the diversity of microbial population abundance between them was compared and analyzed.The results showed that the diversity of microbial population abundance in the experimental group was significantly higher than that in the blank group, and the diversity of microbial population abundance in the experimental group was significantly different from that in the blank group, indicating that the composition of microbial population in the experimental group was significantly different from that in the blank group. In the OTU cluster analysis, the number of OTU clusters in the Experimental group soil samples (S.Y.1-S.Y.8) was significantly higher than that in the Blank group soil samples (K.B.1-K.B.8). In the sample complexity analysis of α-diversity analysis, the richness and diversity of microbial population in soil samples of Experimental group (S.Y.1-S.Y.8) were significantly higher than that in soil samples of Blank group (K.B.1-K.B.8), which was clearly reflected in the Species accumulation boxplot and Graph of species diversity. In the β-diversity analysis, PcoA, PCA and NMDS analysis methods were used to analyze the difference of microbial population diversity between Experimental soil samples (S.Y.1-S.Y.8) and Blank soil samples (K.B.1-K.B.8). The results showed that the diversity of microbial population in Experimental soil sample (S.Y.1-S.Y.8) was significantly different from that in Blank soil sample (K.B.1-K.B.8). In this paper, 16sDNA high-throughput sequencing technology was used to analyze the diversity of microbial population abundance between Blank soil samples and Experimental soil samples, and it was proved that JunCao"Oasis No. 1" had good saline-alkali soil improvement characteristics. It can effectively increase the abundance of microbial population in saline-alkali soil, so as to restore the microbial population ecosystem in saline-alkali soil, which has important application value in soil saline-alkali control.

2021 ◽  
Author(s):  
ZhiQi Xiao ◽  
ZhanXi Lin

In order to explore the difference of soil microbial population structure and abundance before and after planting JunCao"Oasis No. 1" in saline-alkali soil, verify the improvement effect of JunCao"Oasis No. 1" on microbial population structure and abundance in saline-alkali soil. Samples were collected from the blank saline area with and without JunCao"Oasis NO.1" and no plant growth on the surface, respectively, as Experimental group soil samples (S.Y.1-S.Y.8) and Blank group soil samples (K.B.1-K.B.8).16sDNA high-throughput sequencing technology was used for sequencing analysis respectively, and the diversity of microbial population abundance between them was compared and analyzed. The results showed that the diversity of microbial population abundance in the experimental group was significantly higher than that in the blank group, and the diversity of microbial population abundance in the experimental group was significantly different from that in the blank group, indicating that the composition of microbial population in the experimental group was significantly different from that in the blank group. In this paper, 16sDNA high-throughput sequencing technology was used to analyze the diversity of microbial population abundance between Blank soil samples and Experimental soil samples, and it was proved that JunCao"Oasis No. 1" had good saline-alkali soil improvement characteristics. It can effectively increase the abundance of microbial population in saline-alkali soil, so as to restore the microbial population ecosystem in saline-alkali soil, which has important application value in soil saline-alkali control.


2020 ◽  
Vol 35 (3) ◽  
pp. 457-463
Author(s):  
Huixia Lan ◽  
Xiangzhi Wang ◽  
Shixin Qi ◽  
Da Yang ◽  
Hao Zhang

AbstractUsing the acclimated activated sludge from the pulping middle-stage effluent, the effect of pH shock on the micro-oxygen activated sludge system with a nano-magnetic powder/graphene oxide composite was studied. The results showed that the removal rates of chemical oxygen demand (CODCr) and ultraviolet adsorption at 254 nm (UV254) decreased. Also, the sludge settling performance was poor due to the impact of pH, but the impact resistance of nano-magnetic powder/graphene oxide group (MGO group) was higher and the recovery was faster. Results of high throughput sequencing indicated that the diversity of microbial community was reduced by the impact of pH, but it was significantly higher in MGO group than in the blank group. The dominant bacteria after pH shock or recovery in both of the system had a large difference. The percentage of the dominant bacteria in the MGO group was higher than that in the blank group. The MGO group had higher electron transfer system (ETS) activity which made the system having a strong pH impact resistance.


2021 ◽  
Vol 17 ◽  
pp. 117693432199635
Author(s):  
Daoxin Liu ◽  
Pengfei Song ◽  
Jingyan Yan ◽  
Haijing Wang ◽  
Zhenyuan Cai ◽  
...  

Wild-caught animals must cope with drastic lifestyle and dietary changes after being induced to captivity. How the gut microbiome structure of these animals will change in response receives increasing attention. The plateau zokor ( Eospalax baileyi), a typic subterranean rodent endemic to the Qinghai-Tibet plateau, spends almost the whole life underground and is well adapted to the environmental pressures of both plateau and underground. However, how the gut microbiome of the plateau zokor will change in response to captivity has not been reported to date. This study compared the microbial community structure and functions of 22 plateau zokors before (the WS group) and after being kept in captivity for 15 days (the LS group, fed on carrots) using the 16S rRNA gene via high-throughput sequencing technology. The results showed that the LS group retained 973 of the 977 operational taxonomic units (OTUs) in the WS group, and no new OTUs were found in the LS group. The dominant bacterial phyla were Bacteroides and Firmicutes in both groups. In alpha diversity analysis, the Shannon, Sobs, and ACE indexes of the LS group were significantly lower than those of the WS group. A remarkable difference ( P < 0.01) between groups was also detected in beta diversity analysis. The UPGMA clustering, NMDS, PCoA, and Anosim results all showed that the intergroup difference was significantly greater than the intragroup difference. And compared with the WS group, the intragroup difference of the gut microbiota in the LS group was much larger, which failed to support the assumption that similar diets should drive convergence of gut microbial communities. PICRUSt revealed that although some functional categories displayed significant differences between groups, the relative abundances of these categories were very close in both groups. Based on all the results, we conclude that as plateau zokors enter captivity for a short time, although the relative abundances of different gut microbiota categories shifted significantly, they can maintain almost all the OTUs and the functions of the gut microbiota in the wild. So, the use of wild-caught plateau zokors in gut microbial studies is acceptable if the time in captivity is short.


Author(s):  
Wahyu Purbalisa ◽  
Ina Zulaehah ◽  
Dolty Melyga W. Paputri ◽  
Sri Wahyuni

Carbon and microbes in the soil fluctuated from time to time due to various things. This study aims to determine the dynamics of carbon and microbes in the soil in the treatment of biochar-compost. In addition to the use of biochar-compost, this research also uses nano biochar and enrichment with microbial consortia. The study was conducted at the screen house using a complete randomized design with three replications with following treatments: control / without organic fertilizer (P0), compost (P1), biochar-compost 1: 4 (P2), nano-biochar-compost 1: 4 (P3 ), biochar-compost + microbial consortia (P4), compost + microbial consortia (P5) and biochar-compost + microbial consortia (P6) with a dose of 2.5 tons/ha respectively. Biochar comes from corncobs. Compost biochar plus application was made before planting.  Parameters observed were soil carbon (C-organic), soil acidity (pH) at 7 DAA, 37 DAA and after harvest, and the total soil microbial population at 2 DAA and after harvest. Soil carbon was measured using Walkey and Black method measured by spectrophotometer, soil pH using a soil: water ratio = 1: 5 and measured by a pH meter, the total microbial population using Total Plate Counting (TPC) method. The results showed carbon and soil microbial populations decreased over time, except for microbial communities in a single compost treatment.


1990 ◽  
Vol 329 (1255) ◽  
pp. 369-373 ◽  

We tried to develop deterministic models for kinetics of 2,4-D breakdown in the soil based on the following considerations: (i) at low concentrations degradation results from maintenance consumption by a large fraction of the soil microbial population; (ii) at high concentration in addition to the maintenance consumption there is a growth-associated carbon incorporation by a small specific microbial population. Values for the biokinetic parameters are consistent with those commonly found in the literature. Comparison between observed and simulated curves suggests that a non-negligible part of the pesticidal carbon exists as microbial by-products.


2021 ◽  
Vol 13 (9) ◽  
pp. 1716-1723
Author(s):  
Jie Li ◽  
Chao Xu ◽  
Yueyue Lu ◽  
Yan Zhang ◽  
Xiaoping Tan

Nanoparticles are known to have recognition ability for targeted delivery, and are thus widely used in the treatments of diseases. Mesoporous nano-titanium dioxide (TiO2) nanoparticles have characteristics of nanomaterials and their porous structure with high surface area strengthens their drug-loading capacity and targeting ability. This study aimed to investigate the effect of mesoporous nano-TiO2 on pancreatic cancer cells and STAT pathway activity. Initially, we prepared mesoporous TiO2 nanoparticles that were characterized. Pancreatic cancer cells were co-cultured with mesoporous nano-TiO2 nanoparticles at different concentrations (0.1 μg/mL, 0.5 μg/mL, 1 μg/mL, 5 μg/mL, and 10 μg/mL) or 10 μg/mL nano-TiO2 (positive control group) or cells cultured alone (blank group). Cell viability was determined at several specific time points (24 h, 48 h, and 72 h). Transwell assay and scratching assay were conducted to determine the number of migrated and invaded cells. STAT3 and JAK2 expressions were examined by RT-qPCR and Western blot analysis. The prepared mesoporous nano-TiO2 exhibited sharp diffraction peaks with enhanced intensity and diffraction rings. STAT pathway was activated in pancreas cancer cells, which had more fluorescent cells than normal cells. The presence of mesoporous nano-TiO2 nanoparticles suppressed cancer cell viability and their inhibition rate increased with increased of nano-TiO2 concentration. The concentration of 10 μg/mL exhibited greatest inhibitory effect and 10 μg/mL mesoporous nano-TiO2 thus was chosen for experimental group. The width of the scratch in the experimental group (19.97±0.82 mm) was higher than in the blank group and positive control group (P < 0.05); 10 μg/mL mesoporous nano-TiO2 significantly decreased the number of invaded cells (71.97±17.84) and number of cell clones (156.91±31.03) (P < 0.05). The expression levels of STAT3 (0.41±0.06 μg/μL) and JAK2 (0.39±0.04 ug/ul) were diminished by treatment with mesoporous nano-TiO2. Mesoporous nano-TiO2 inhibits pancreatic cancer cell growth and STAT expression, as its inhibitory effect depends on its concentration. These findings might provide a novel insight into nanoparticle-based treatment for pancreatic cancer.


Sign in / Sign up

Export Citation Format

Share Document