scholarly journals Intimate relationships among soil bacteria: actinomycetes and mycolic acid-containing bacteria

Author(s):  
Manami Kato ◽  
Shumpei Asamizu ◽  
Hiroyasu Onaka

Abstract Co-culture is an efficient strategy for natural product discovery. We have used mycolic acid-containing bacteria (MACB) Tsukamurella pumonis TP-B0596 to induce secondary metabolism by actinomycetes and have found several natural products. We also observed that MACB attached to the mycelium of Streptomyces lividans forming coaggregates during combined-culture. This stimulated interest in the interactions among actinomycetes and MACB, and we found that soil isolated cultures contained a mixture of actinomycetes and MACB. Our previously observed interactions were the result of selective screening and combination of bacteria in the lab, which warranted investigation of the existence of these interactions in the natural soil environment. Therefore, in this paper, we report the interaction between a co-isolated natural pair of actinomycetes and MACB in terms of morphology and metabolic changes. A natural pair of actinomycetes and MACB co-aggregated in liquid culture and showed metabolic changes. Interestingly, co-aggregated actinomycetes and MACB were re-isolated from soil with no obvious morphological colony differences from the colony of a single strain. The results demonstrate that there is a stochastic chance of picking colonies containing co-aggregated actinomycetes and MACB, which suggests that the pair can exist in co-aggregate form in the soil environment and interact with each other.

2010 ◽  
Vol 56 (5) ◽  
pp. 716-724 ◽  
Author(s):  
Shintaro HARA ◽  
Yasuyuki HASHIDOKO ◽  
Roman V. DESYATKIN ◽  
Tomoaki MORISHITA ◽  
Ryusuke HATANO

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liqiang Cui ◽  
Qinya Fan ◽  
Jianxiong Sun ◽  
Guixiang Quan ◽  
Jinlong Yan ◽  
...  

AbstractFenton-like system formed in a natural soil environment deemed to be significant in the aging process of biochar. Aged biochars have distinct physico-chemical and surface properties compared to non-aged biochar. The aged biochar proved to be useful soil amendment due to its improved elements contents and surface properties. The biochar aging process resulted in increased surface area and pore volume, as well as carbon and oxygen-containing functional groups (such as C=O, –COOH, O–C=O etc.) on its surface, which were also associated with the adsorption behavior of 2,4,6-trichlorophenol (2,4,6-TCP). The biochar aging increased the adsorption capacity of 2,4,6-TCP, which was maximum at pH 3.0. The 2,4,6-TCP adsorption capacity of aged-bush biochar (ABB) and aged-peanut shell biochar (APB) was increased by 1.0–11.0% and 7.4–38.8%, respectively compared with bush biochar (BB) and peanut shell biochar (PB) at the same initial concentration of 2,4,6-TCP. All biochars had similar 2,4,6-TCP desorption rates ranging from 33.2 to 73.3% at different sorption temperatures and times. The desorbed components were mainly 2,4,6-TCP and other degraded components, which were low in concentration with small molecule substance. The results indicated that the aged-biochar could be effective for the long-term remediation of naturally organic polluted soils.


2016 ◽  
Author(s):  
Tess E Brewer ◽  
Kim M Handley ◽  
Paul Carini ◽  
Jack A Gibert ◽  
Noah Fierer

AbstractAlthough bacteria within theVerrucomicrobiaphylum are pervasive in soils around the world, they are underrepresented in both isolate collections and genomic databases. Here we describe a single verrucomicrobial phylotype within the classSpartobacteriathat is not closely related to any previously described taxa. We examined >1000 soils and found this spartobacterial phylotype to be ubiquitous and consistently one of the most abundant soil bacterial phylotypes, particularly in grasslands, where it was typically the most abundant phylotype. We reconstructed a nearly complete genome of this phylotype from a soil metagenome for which we propose the provisional name ‘CandidatusUdaeobacter copiosus’. TheCa. U. copiosus genome is unusually small for soil bacteria, estimated to be only 2.81 Mbp compared to the predicted effective mean genome size of 4.74 Mbp for soil bacteria. Metabolic reconstruction suggests thatCa. U. copiosus is an aerobic chemoorganoheterotroph with numerous amino acid and vitamin auxotrophies. The large population size, relatively small genome and multiple putative auxotrophies characteristic ofCa. U. copiosus suggests that it may be undergoing streamlining selection to minimize cellular architecture, a phenomenon previously thought to be restricted to aquatic bacteria. Although many soil bacteria need relatively large, complex genomes to be successful in soil,Ca. U. copiosus appears to have identified an alternate strategy, sacrificing metabolic versatility for efficiency to become dominant in the soil environment.


2019 ◽  
Vol 11 (4) ◽  
pp. 364
Author(s):  
Marcos Gino Fernandes ◽  
Renata Pires de Araújo ◽  
Eduardo Neves Costa ◽  
Ana Claudia Terumi Abe Zangirolymo ◽  
Rodrigo Matheus Pereira

The first record of transgenic cotton cultivation in Brazil was in 2005, of that of the cultivar MON 531, possessing the cry1Ac gene. Since then, no evaluation has been performed to understand whether the cultivation of Bt cotton has caused any interference with the soil microbiota, including bacteria. In this context, our research was aimed to assess whether the cultivation of Bt cotton negatively affects the community of soil bacteria, through quantitative and metagenomic analyses (marker gene 16S rRNA) for phylum identification. Samples of bacterial populations obtained from the soil cultivated with Bt cotton expressing the Cry1Ac toxin were compared with soil samples from the area cultivated with conventional cotton. Significant differences were not observed in the measure of colony-forming units of bacteria between the soils cultivated with Bt and non-Bt cotton; however, differences were detected only when comparing samples from different collection times of the Bt treatment. Cultivation of Bt cotton did not affect the diversity of the soil bacterial population. Overall, our study shows that, similar to most of the works that have been reported worldwide, cultivation of transgenic cotton does not seem to affect the quantity and diversity of natural soil bacteria.


1998 ◽  
Vol 38 (12) ◽  
pp. 171-174 ◽  
Author(s):  
M. N Byappanahalli ◽  
R. S. Fujioka

Concentrations of faecal coliforms and Escherichia coli in environmental waters have historically been used to establish recreational water quality standards. When these bacteria are used as indices of water quality, it is assumed that there are no significant environmental sources of these bacteria which are unrelated to direct faecal contamination. However, we have previously reported that in tropical island environments such as in Hawaii, these faecal indicators are consistently found at high concentrations in all streams and the source of these faecal bacteria is the soil. To become so well established in soil we hypothesized that these faecal bacteria must have the ability to multiply in the natural soil environment at ambient temperature (23–25°C). Three lines of evidence support this hypothesis: (1) E. coli was shown to grow on 10% soil extract agar, (2) populations of faecal coliforms and E. coli from sewage were shown to immediately increase by about three logs when simple nutrients (glucose and salts) were added to natural soil and (3) faecal coliforms and E. coli increased by two logs within 24 h when a minimal amount of sewage was added to cobalt-irradiated soil. These results indicate that tropical soil environments provide sufficient means to support the growth of faecal coliforms and E. coli. However, under natural soil conditions, indigenous soil microorganisms are much more efficient in obtaining nutrients and we hypothesize that faecal bacteria grow sporadically in response to available nutrients.


2013 ◽  
Vol 176 (4) ◽  
pp. 497-499 ◽  
Author(s):  
Thilo Rennert ◽  
Carsten W. Mueller ◽  
Tim Mansfeldt ◽  
Johann Lugmeier

2000 ◽  
Vol 66 (9) ◽  
pp. 3868-3877 ◽  
Author(s):  
N. J. Burroughs ◽  
P. Marsh ◽  
E. M. H. Wellington

ABSTRACT We observed the infection cycle of the temperate actinophage KC301 in relation to the growth of its host Streptomyces lividansTK24 in sterile soil microcosms. Despite a large increase in phage population following germination of host spores, there was no observable impact on host population numbers as measured by direct plate counts. The only change in the host population following infection was the establishment of a small subpopulation of KC301 lysogens. The interaction of S. lividans and KC301 in soil was analyzed with a population-dynamic mathematical model to determine the underlying mechanisms of this low susceptibility to phage attack relative to aquatic environments. This analysis suggests that the soil environment is a highly significant component of the phage-host interaction, an idea consistent with earlier observations on the importance of the environment in determining host growth and phage-host dynamics. Our results demonstrate that the accepted phage-host interaction and host life cycle, as determined from agar plate studies and liquid culture, is sufficient for quantitative agreement with observations in soil, using soil-determined rates. There are four significant effects of the soil environment: (i) newly germinated spores are more susceptible to phage lysis than are hyphae of developed mycelia, (ii) substrate mycelia in mature colonies adsorb about 98% of the total phage protecting susceptible young hyphae from infection, (iii) the burst size of KC301 is large in soil (>150, 90% confidence) relative to that observed in liquid culture (120, standard error of the mean [SEM], 6), and (iv) there is no measurable impact on the host in terms of reduced growth by the phage. We hypothesize that spatial heterogeneity is the principal cause of these effects and is the primary determinant in bacterial escape of phage lysis in soil.


1983 ◽  
Vol 29 (6) ◽  
pp. 644-648 ◽  
Author(s):  
Thu Kauri

A beech forest after clear-cutting was replanted with spruce. To study how this perturbation affected soil bacteria and their physiological capabilities, an investigation was undertaken 4 years after the change of forest type. Compared with an earlier study in the beech forest, from 1972 to 1975, conducted immediately before clear-cutting, bacterial numbers in the young spruce plantation had increased; an exception was the upper layer (A00), where the numbers decreased. The population densities of bacteria decomposing xylan, pectin, starch, cellulose, and chitin were estimated by a direct multipoint method. The numbers of bacteria in all the physiological groups studied were higher in 1979–1980, with the same exception as before (A00). The greatest changes occurred in the upper horizons. There were considerable changes in the soil environment after the former beech litter fall ceased; the forest floor became more exposed, and the ground vegetation changed. Changes took place in soil properties, such as organic matter and pH. A slight increase in pH was observed in all horizons except in A00, and organic matter increased in two of the horizons (A01/A1; A1).


2000 ◽  
Vol 66 (4) ◽  
pp. 1580-1586 ◽  
Author(s):  
Anthony S. Cornish ◽  
William J. Page

ABSTRACT Both molybdate and iron are metals that are required by the obligately aerobic organism Azotobacter vinelandii to survive in the nutrient-limited conditions of its natural soil environment. Previous studies have shown that a high concentration of molybdate (1 mM) affects the formation of A. vinelandiisiderophores such that the tricatecholate protochelin is formed to the exclusion of the other catecholate siderophores, azotochelin and aminochelin. It has been shown previously that molybdate combines readily with catecholates and interferes with siderophore function. In this study, we found that the manner in which each catecholate siderophore interacted with molybdate was consistent with the structure and binding potential of the siderophore. The affinity that each siderophore had for molybdate was high enough that stable molybdo-siderophore complexes were formed but low enough that the complexes were readily destabilized by Fe3+. Thus, competition between Fe3+ and molybdate did not appear to be the primary cause of protochelin accumulation; in addition, we determined that protochelin accumulated in the presence of vanadate, tungstate, Zn2+, and Mn2+. We found that all five of these metal ions partially inhibited uptake of55Fe-protochelin and 55Fe-azotochelin complexes. Also, each of these metal ions partially inhibited the activity of ferric reductase, an enzyme important in the deferration of ferric siderophores. Our results suggest that protochelin accumulates in the presence of molybdate because protochelin uptake and conversion into its component parts, azotochelin and aminochelin, are inhibited by interference with ferric reductase.


2014 ◽  
pp. n/a-n/a ◽  
Author(s):  
Ditte A. Søborg ◽  
Niels Bohse Hendriksen ◽  
Niels Kroer

Sign in / Sign up

Export Citation Format

Share Document