Soil Chemical Fertility Change Over 4 Decades In The Morvan Mountains And Influence of Tree Species (Burgundy, France)
Abstract Background: Intensive silvicultural practices and the planting of monospecific forests of coniferous, more productive compared to hardwoods, may threaten over the mid to long-term the sustainability of soil chemical fertility of forest ecosystems and is a major concern for forest managers and policy.Methods: We investigated the tree species effect (Quercus sessiliflora Smith, Fagus sylvatica L., Picea abies Karst., Pseudotsuga menziesii Mirb. Franco., Abies nordmanniana Spach. and Pinus nigra Arn. ssp laricio Poiret var corsicana) on the change over time of soil chemical properties and nutrient pool sizes in the mineral and organic layers of the soil during the 45 years after the plantation of the Breuil-Chenue common garden experiment (Burgundy, France). The organic and mineral soil layers down to 70 cm depth were sampled in the different monospecific plots in 1974, 2001 and 2019. Results: The Ca and Mg exchangeable pools and soil pH increased over the entire soil profile in most stands. However, the decrease of pH and the increase of exchange acidity in the topsoil layers under conifers and the overall decrease of exchangeable K pools in most stands highlighted that soil acidification is still on-going at this site but the intensity of this process depends on the tree species. Indeed, three groups of species could be distinguished: i) Nordmann fir / Norway spruce where acidolysis and chelation occurred, resulting in the most pronounced pH decrease in the topsoil, ii) Douglas fir / Laricio pine where acidification caused by elevated nitrification rates is probably currently compensated by larger weathering and/or atmospheric depositions fluxes, iii) and oak / beech where soil acidification was less intense. Counterintuitively, soil acidification at this site resulted in an increase in soil CEC which limited the loss of nutrient cations. This change in soil CEC was most likely explained by the precipitation/dissolution dynamics of aluminium (Al) (hydr)oxides in the interfoliar space of phyllosilicates and/or the increase in soil carbon (C) content in the topsoil layers. Conclusion: Tree species greatly and fairly rapidly (<45 years) influence the soil chemical fertility and the pedogenetic processes which in turn may impact forest ecosystem functions and services.