scholarly journals Efficient Exploration of Silicon Derived Benefits to Combat Biotic and Abiotic Stresses in Fruit Crops

Author(s):  
Vinaykumar Rachappanavar ◽  
Arushi Padiyal ◽  
Jitender Kumar Sharma ◽  
Satish Kumar Gupta ◽  
Narender Negi

Abstract Silicon (Si) is the most abundant element after oxygen on the earth crust surface. It plays essential role in crop production by stimulating the growth and development. Very substantial efforts have been performed to better explore Si derived benefits for horticulture crops. In the present review, molecular and physiological mechanisms explaining the observed beneficial effects plant derive from the Si supplementations, more particularly in horticultural species have been discussed. In general, horticulture crops need extensive management and higher crop protection measures compared to agronomical crops. Therefore, integrated approaches including Si supplementations will help to improve plant resilience under biotic and abiotic stresses. Application of Si to plants promotes cell walls strength and provides additional support through increased mechanical and biochemical support. Horticultural crop production is frequently subjected to the naturally occurring different biotic and abiotic stresses that can substantially reduce the absorption and translation of essential elements and ultimately decrease the crop yield. Fruit and vegetable production in Drought, salinity, high and low temperature, toxic metals and pest infection prone areas is the key to meet the world minimum nutrients demand. Here, molecular mechanism involved in the Si uptake by root and subsequent transport to areal tissues is also illustrated. However, Si uptake mechanism at molecular level poorly studied in horticulture crops. Here we described the role of Si and its transporters in mitigating abiotic stress condition in horticultural plants.

2021 ◽  
Vol 10 (1) ◽  
pp. 456-475
Author(s):  
Efat Zohra ◽  
Muhammad Ikram ◽  
Ahmad A. Omar ◽  
Mujahid Hussain ◽  
Seema Hassan Satti ◽  
...  

Abstract In the present era, due to the increasing incidence of environmental stresses worldwide, the developmental growth and production of agriculture crops may be restrained. Selenium nanoparticles (SeNPs) have precedence over other nanoparticles because of the significant role of selenium in activating the defense system of plants. In addition to beneficial microorganisms, the use of biogenic SeNPs is known as an environmentally friendly and ecologically biocompatible approach to enhance crop production by alleviating biotic and abiotic stresses. This review provides the latest development in the green synthesis of SeNPs by using the results of plant secondary metabolites in the biogenesis of nanoparticles of different shapes and sizes with unique morphologies. Unfortunately, green synthesized SeNPs failed to achieve significant attention in the agriculture sector. However, research studies were performed to explore the application potential of plant-based SeNPs in alleviating drought, salinity, heavy metal, heat stresses, and bacterial and fungal diseases in plants. This review also explains the mechanistic actions that the biogenic SeNPs acquire to alleviate biotic and abiotic stresses in plants. In this review article, the future research that needs to use plant-mediated SeNPs under the conditions of abiotic and biotic stresses are also highlighted.


Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 192 ◽  
Author(s):  
Domenico Ronga ◽  
Elisa Biazzi ◽  
Katia Parati ◽  
Domenico Carminati ◽  
Elio Carminati ◽  
...  

Microalgae are attracting the interest of agrochemical industries and farmers, due to their biostimulant and biofertiliser properties. Microalgal biostimulants (MBS) and biofertilisers (MBF) might be used in crop production to increase agricultural sustainability. Biostimulants are products derived from organic material that, applied in small quantities, are able to stimulate the growth and development of several crops under both optimal and stressful conditions. Biofertilisers are products containing living microorganisms or natural substances that are able to improve chemical and biological soil properties, stimulating plant growth, and restoring soil fertility. This review is aimed at reporting developments in the processing of MBS and MBF, summarising the biologically-active compounds, and examining the researches supporting the use of MBS and MBF for managing productivity and abiotic stresses in crop productions. Microalgae are used in agriculture in different applications, such as amendment, foliar application, and seed priming. MBS and MBF might be applied as an alternative technique, or used in conjunction with synthetic fertilisers, crop protection products and plant growth regulators, generating multiple benefits, such as enhanced rooting, higher crop yields and quality and tolerance to drought and salt. Worldwide, MBS and MBF remain largely unexploited, such that this study highlights some of the current researches and future development priorities.


Author(s):  
O. Bat-Erdene ◽  
A. Szegő ◽  
M. Gyöngyik ◽  
I. Mirmazloum ◽  
I. Papp

Silicon (Si) has long been considered as non-essential element for plant’s growth and production. Numerous efforts are being made for the discovery of its beneficial effects with large scale studies laying foundation for new findings and hypotheses. Therefore, Si has been suggested to be a quasi-essential element due to its positive effects against biotic and abiotic stresses alike. Though Si is the second most abundant element in the soil profile, its availability to plants is limited to the form of monosilicic acid only. Besides, plants’ ability to take-up Si and use it in their physiological processes also depends on the available transporters associated with it. Thus, the present review covers uptake and transport of silicon in plants as well as Si mediated physiological processes, including mechanisms underlying induced tolerance against biotic and abiotic stresses with a particular emphasis on horticultural species.


2019 ◽  
Vol 5 (2) ◽  
pp. 54-61
Author(s):  
Zahir Muhammad ◽  
Naila Inayat ◽  
Abdul Majeed ◽  
Hazrat Ali ◽  
Kaleem Ullah ◽  
...  

Abstract Crop plants have defined roles in agricultural production and feeding the world. They are affected by several environmental and biological stresses, which range from soil salinity, drought, and climate change to exposure to diverse plant pathogens. These stresses pose risk to agricultural sustainability. To avoid the increasing biotic and abiotic pressure on crop plants, agrochemicals are extensively used in agriculture for attaining desirable yield and production of crops. However, the use of agrochemicals is also challenging the integrity of ecosystems. Thus, to maintain the integrity of ecosystem, sustainable measures for elevated crop production are required. Allelopathy, a process of chemical interactions between plants and other organisms, could be used in the management of several biotic and abiotic stresses if the basic mechanisms of the phenomena and plants with allelopathic potentials are known. Allelopathy has a promising future for its application in agriculture for natural weed management, improving soil health and suppressing plant diseases. The aim of this review is to discuss the importance of allelopathy in agriculture and its role in sustainability with a specific focus on weed management and crop protection.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Mohammad Saidur Rhaman ◽  
Shahin Imran ◽  
Farjana Rauf ◽  
Mousumi Khatun ◽  
Carol C. Baskin ◽  
...  

Plants are often exposed to abiotic stresses such as drought, salinity, heat, cold, and heavy metals that induce complex responses, which result in reduced growth as well as crop yield. Phytohormones are well known for their regulatory role in plant growth and development, and they serve as important chemical messengers, allowing plants to function during exposure to various stresses. Seed priming is a physiological technique involving seed hydration and drying to improve metabolic processes prior to germination, thereby increasing the percentage and rate of germination and improving seedling growth and crop yield under normal and various biotic and abiotic stresses. Seed priming allows plants to obtain an enhanced capacity for rapidly and effectively combating different stresses. Thus, seed priming with phytohormones has emerged as an important tool for mitigating the effects of abiotic stress. Therefore, this review discusses the potential role of priming with phytohormones to mitigate the harmful effects of abiotic stresses, possible mechanisms for how mitigation is accomplished, and roles of priming on the enhancement of crop production.


Author(s):  
Rabia Akram ◽  
Farah Deeba ◽  
Maryam Zain ◽  
Nadia Iqbal

Abiotic and biotic stresses are the causes of drastic changes in plants growth and development.These stresses effect crop production and quality, thus result is in economic lose and food insecurity. Many factors play vital role in regulating growth of plants along with developmental pathways during biotic and abiotic stresses. Transcription factors are proteins that control physiological, developmental and stress responses in plants. Ethylene response factors belong to the biggest family of transcription factors, known to participate in various stress tolerance like drought, heat, salt and cold. They are significant regulators of plant gene expression. The objective of this review is to present how ethylene response factor family proteins became the focus of stress tolerance as well as the development and growth of plants.


1985 ◽  
Vol 21 (2) ◽  
pp. 153-167 ◽  
Author(s):  
P. J. Salter ◽  
Jayne M. Akehurst ◽  
G. E. L. Morris

SUMMARYIntercropping Brussels sprouts with cabbage was studied in two experiments comparing four different intercropping systems with sole crop production. Intercropping presented no agronomic or management problems because both crops had compatible cultural and crop protection requirements. Analysis of Land Equivalent Ratios and Relative Value Totals showed that the four intercropping systems gave consistently larger yields than the sole crops. In one experiment profitability, measured by the gross margin, was higher from all of the intercropping systems and costs per unit of produce were reduced. Similar results were obtained with one intercropping system in the other experiment. Alternative methods of evaluating the results in economic terms are discussed, together with the implications of intercropping in high-input systems of vegetable production.


Author(s):  
. Shantamma ◽  
K. T. Rangaswamy ◽  
N. B. Prakash ◽  
Raghavendra Achari

The growth rate of agricultural production is reducing worldwide every year due to mainly biotic and abiotic stresses including plant diseases. Various organic and inorganic methods are being used to protect plants from disease causing pathogens. Among them, use of pesticides is the most prevalent one incurring millions of dollars on pesticides globally for control of plant diseases. In recent years, environmental hazards and ill effects caused by indiscriminate use of pesticides have been widely discussed. Therefore, agriculture scientists are finding an alternative antimicrobial compounds such as nanoparticles for the management of diseases with least adverse effect on nature and ecosystem. Herein we reviewed the synthesis, antimicrobial efficacy and compatibility of silver nanoparticles which could help to develop the novel technology for crop protection.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2559
Author(s):  
Nur Syafikah Abdullah ◽  
Febri Doni ◽  
Muhamad Shakirin Mispan ◽  
Mohd Zuwairi Saiman ◽  
Yusmin Mohd Yusuf ◽  
...  

Increased agricultural activities driven by rising food demand have led to environmental problems mostly arising from the high levels of external inputs and resources that are required. Additionally, environmental changes, such as global warming, can lead to various biotic and abiotic stresses, which have negative impacts on crop production. Numerous solutions and agricultural strategies have been introduced to overcome these problems. One of the ways to improve plant production as well as to increase resistance towards biotic and abiotic stresses is by utilizing beneficial microbes as soil inoculants. A better understanding of the ability of Trichoderma to enhance crop production and the mechanisms that are involved are important for deriving maximum benefits from their exploitation. These versatile fungi hold great promise for the development of viable commercial products that can be used widely in agriculture for increasing crop productivity in a more sustainable way. Many previous reviews on Trichoderma have tended to focus on the mechanisms of Trichoderma in enhancing plant growth and yield. This current review discusses the sustainability aspect of using Trichoderma as plant growth regulators, the impact on plant growth and yield as well as their effects in regulating biotic and abiotic stresses.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 819
Author(s):  
Mohamad Hesam Shahrajabian ◽  
Christina Chaski ◽  
Nikolaos Polyzos ◽  
Nikolaos Tzortzakis ◽  
Spyridon A. Petropoulos

Chitin and chitosan are natural compounds that are biodegradable and nontoxic and have gained noticeable attention due to their effective contribution to increased yield and agro-environmental sustainability. Several effects have been reported for chitosan application in plants. Particularly, it can be used in plant defense systems against biological and environmental stress conditions and as a plant growth promoter—it can increase stomatal conductance and reduce transpiration or be applied as a coating material in seeds. Moreover, it can be effective in promoting chitinolytic microorganisms and prolonging storage life through post-harvest treatments, or benefit nutrient delivery to plants since it may prevent leaching and improve slow release of nutrients in fertilizers. Finally, it can remediate polluted soils through the removal of cationic and anionic heavy metals and the improvement of soil properties. On the other hand, chitin also has many beneficial effects such as plant growth promotion, improved plant nutrition and ability to modulate and improve plants’ resistance to abiotic and biotic stressors. The present review presents a literature overview regarding the effects of chitin, chitosan and derivatives on horticultural crops, highlighting their important role in modern sustainable crop production; the main limitations as well as the future prospects of applications of this particular biostimulant category are also presented.


Sign in / Sign up

Export Citation Format

Share Document