scholarly journals An Investigation on Abrasive Wear Characteristics of Thermoplastic Composites Under Conditions of Different Loads and Sliding Speeds

Author(s):  
Ashish Soni ◽  
Pankaj Kumar Das

Abstract The diverse nature of polymer with attractive properties is replacing the conventional materials with polymeric composites. The present study is sought to evaluate the wear performance of thermoplastic based composites under the conditions of different loads and sliding speeds. A series of nine different composite materials was developed by using low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polyethylene terephthalate (PET) with replacements of sand i.e. 0, 30, 40, and 50 wt.%. The abrasive wear was evaluated by following the ASTM G65 standard test for abrasive wear through dry-sand rubber wheel apparatus under the applied loads of 34.335, 56.898, 68.719, 79.461 and 90.742 (N), and sliding speeds of 0.05388, 0.7184, 0.8980, 1.0776 and 1.4369 (m/s). The results showed the wear response varies non-linearly with load and sliding speed. The possible correlations between wear and mechanical properties, and throughout discussions for wear behaviors with morphological study of the worn surfaces were provided.

2015 ◽  
Vol 30 (6) ◽  
pp. 855-884 ◽  
Author(s):  
AK Sudari ◽  
AA Shamsuri ◽  
ES Zainudin ◽  
PM Tahir

Three types of surfactants, specifically cationic, anionic, and nonionic, at different weight percentages were added into high-density polyethylene/low-density polyethylene/cellulose (HDPE/LDPE/cellulose) biocomposites via melt mixing. The cationic and anionic surfactants which are hexadecyltrimethylammonium bromide (HTAB) and sodium stearate (SS), respectively, were added from 4 to 20 wt%, whereas the nonionic surfactant which is sorbitan monostearate (SM) was added from 1 to 5 wt%. The mechanical testing results exhibited that the addition of HTAB increased tensile strength and tensile modulus, while SS deteriorated mechanical properties, while SM increased impact strength and tensile extension of the biocomposites. Based on the mechanical properties results, optimum weight percentages of HTAB and SM were 12 wt% and 4 wt%, respectively. The scanning electron microscopic micrographs displayed that the amount of cellulose fillers pullout decreased with the addition of HTAB, followed by SM, but it increased with SS. Fourier transform infrared spectra, X-ray diffractometer patterns, thermogravimetric analysis results, and differential scanning calorimetry thermograms have confirmed the presence of physical interactions only with the addition of HTAB and SM. Based on the results, compatibilizing effect was found in HTAB, whereas SM has not showed compatibilizing effect but instead plasticizing effect. However, neither compatibilizing nor plasticizing effect was exhibited by SS.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3159-3170
Author(s):  
Fatma Bozkurt ◽  
Büşra Avci ◽  
Fatih Mengeloğlu

The potential utilization of melamine impregnated paper (MIP) waste in thermoplastic composites was investigated. Composites were also manufactured utilizing wood flour (WF) at the same filler rates for comparison. The composites were manufactured using a compression molding method. The effects of filler type and filler rate on the mechanical properties of low-density polyethylene (LDPE)-based composites were evaluated. Mechanical properties, such as tensile and flexural strengths, were determined in accordance with ASTM D638 (2001) and ASTM D790 (2003), respectively. Results showed that filler type and filler content had significant effects on all mechanical properties investigated. Both fillers improved all mechanical properties except for tensile strength and elongation at break of LDPE. In conclusion, MIP waste has a potential to be utilized in thermoplastic-based composite manufacturing and might generate some economic and environmental benefits.


2014 ◽  
Vol 1025-1026 ◽  
pp. 265-269 ◽  
Author(s):  
Jan Navratil ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
David Manas ◽  
Martin Bednarik ◽  
...  

This research paper deals with utilization of recycled irradiated high-density polyethylene (HDPEx). Grit prepared of irradiated HDPEx was used as a filler into virgin low-density polyethylene (LDPE). Concentrations from 10 to 60 % were made and their influence on mechanical properties was investigated. Tensile test at ambient and elevated temperature was used to describe mechanical properties of resulting blends. Results show that there is an upward trend of elastic modulus and ultimate tensile strength and downward trend of nominal strain at ambient temperature. Similar findings were observed at elevated temperature, which might suggest possible utilization of such modified thermoplastic materials. However other material properties have to be tested to make final conclusion.


2018 ◽  
Vol 41 (4) ◽  
Author(s):  
Éverton Hillig ◽  
Ignacio Bobadilla ◽  
Ademir José Zattera ◽  
Érick Agonso Agnes de Lima ◽  
Raquel Marchesan

ABSTRACT In this study, composites with three types of thermoplastic matrix and cellulosic material in a proportion of 40% were produced. The three thermoplastic matrices were high density polyethylene (HDPE), polypropylene (PP) and low density polyethylene (LDPE), and the cellulosic materials were pure wood flour (Pinus taeda L) or a mixture of wood flour and coconut shell flour (Cocus nucifera L) in equal ratios. The objective was to evaluate the influence of addition of coconut shell on the physico-mechanical properties (density, strength and rigidity) and the distribution of the cellulosic material in the thermoplastic matrix of the manufactured composites. It was found that the composites had a satisfactory distribution of wood flour in thermoplastic matrices, but the addition of coconut shell promoted bubble formation in the resulting pieces and, thus, interfered with the material properties. The use of a coupling agent promoted interfacial adhesion (cellulose - thermoplastic matrix), which was better in high density polyethylene composites, followed by polypropylene and low density polyethylene. In general, the coconut shell addition caused a decrease of all properties compared to composites made with Loblolly Pine. In addition, the interactions between thermoplastic type and cellulosic matrix type have been statistically confirmed, which caused variations in the studied properties


2011 ◽  
Vol 181-182 ◽  
pp. 88-91 ◽  
Author(s):  
Xin Ying Lv ◽  
Qiang Liu ◽  
Yan Hua Zhang ◽  
Ming Wei Di

Lignin have been blended with low density polyethylene (LDPE). Maleic anhydride grafted high density polyethylene (HDPE-g-MAH) has been added as compatibilizing agent. The weight ratio of LDPE, ligin and HDPE-a-MAH were 75:25:7.5, 75:25:10 and 75:25:12.5, respectively. The mechanical properties of the blends were investigated according to Chinese standard GB/1447-2005 and compared with those of lignin/LDPE composites without compatibilizing agent. Scanning electron microscopy (SEM) was used to investigate the dispersion of the lignin and LDPE and the compatibilizing mechanism was analyzed. The results reveal that addition of compatibilizing agent increased the interfacial bonding strength of the composites, improved the mechanical properties and obtained the better dispersion of the lignin and LDPE.


Sign in / Sign up

Export Citation Format

Share Document