scholarly journals The air pollution tradeoff in India: Saving more lives versus reducing the inequality of exposure

Author(s):  
Ashwini Sankar ◽  
Andrew Goodkind ◽  
Jay Coggins

Abstract Chronic exposure to ambient fine particulate matter (PM2.5) represents one of the largest global public health risks, leading to millions of premature deaths annually. For a country facing high and spatially variable exposures, prioritizing where to reduce PM2.5 concentrations leads to an inherent tradeoff between saving the most lives and reducing inequality of exposure. This tradeoff results from the shape of the concentration-response function between exposure to PM2.5 and mortality, which indicates that the additional lives saved per unit reduction in PM2.5 declines as concentrations increase. We estimate this concentration-response function for urban areas of India, finding that a 10 unit reduction in PM2.5 in already-clean locations will reduce the mortality rate substantially (4.2% for a reduction from 30 to 20 µgm-3), while a 10 unit reduction in the dirtiest locations will reduce mortality only modestly (1.2% for a reduction from 90 to 80 µgm-3). We explore the implications of this PM2.5/mortality relationship by considering a thought experiment. If India had a fixed amount of resources to devote to PM2.5 concentration reductions across urban areas, what is the lives saved/inequality of exposure tradeoff from three different methods of employing those resources? Across our three scenarios—1) which reduces exposures for the dirtiest districts, 2) which reduces exposures everywhere equally, and 3) which reduces exposures to save the most lives—scenario 1 saves 18,000 lives per year while reducing the inequality of exposure by 65%, while scenario 3 saves 126,000 lives per year, but increases inequality by 19%.

Author(s):  
Youngrin Kwag ◽  
Min-ho Kim ◽  
Shinhee Ye ◽  
Jongmin Oh ◽  
Gyeyoon Yim ◽  
...  

Background: Preterm birth contributes to the morbidity and mortality of newborns and infants. Recent studies have shown that maternal exposure to particulate matter and extreme temperatures results in immune dysfunction, which can induce preterm birth. This study aimed to evaluate the association between fine particulate matter (PM2.5) exposure, temperature, and preterm birth in Seoul, Republic of Korea. Methods: We used 2010–2016 birth data from Seoul, obtained from the Korea National Statistical Office Microdata. PM2.5 concentration data from Seoul were generated through the Community Multiscale Air Quality (CMAQ) model. Seoul temperature data were collected from the Korea Meteorological Administration (KMA). The exposure period of PM2.5 and temperature were divided into the first (TR1), second (TR2), and third (TR3) trimesters of pregnancy. The mean PM2.5 concentration was used in units of ×10 µg/m3 and the mean temperature was divided into four categories based on quartiles. Logistic regression analyses were performed to evaluate the association between PM2.5 exposure and preterm birth, as well as the combined effects of PM2.5 exposure and temperature on preterm birth. Result: In a model that includes three trimesters of PM2.5 and temperature data as exposures, which assumes an interaction between PM2.5 and temperature in each trimester, the risk of preterm birth was positively associated with TR1 PM2.5 exposure among pregnant women exposed to relatively low mean temperatures (<3.4 °C) during TR1 (OR 1.134, 95% CI 1.061–1.213, p < 0.001). Conclusions: When we assumed the interaction between PM2.5 exposure and temperature exposure, PM2.5 exposure during TR1 increased the risk of preterm birth among pregnant women exposed to low temperatures during TR1. Pregnant women should be aware of the risk associated with combined exposure to particulate matter and low temperatures during TR1 to prevent preterm birth.


2019 ◽  
Vol 25 (6) ◽  
pp. 898-907 ◽  
Author(s):  
M. Gokul Raj ◽  
S. Karthikeyan

Daily commuting increases level of contaminants inhaled by urban community and it is influenced by mode and time of commuting. In this study, the commuters’ exposure to ambient particulate matter (PM2.5) and nitrogen dioxide (NO2) was assessed during three modes of travel in six different road stretches of Chennai. The mean distance of road stretches was 25 km and the exposure to pollutants was assessed during peak hours and off-peak hours. The average travel duration was in the range of 39 to 91 min in motorbike, 83 to 140 min in car and 110 to 161 min in bus. Though there was variation on exposure to concentration in modes of transportation, the maximum exposure concentration of PM2.5 was observed as 709 μg/m<sup>3</sup> in bus and the minimum exposure concentration was 29 μg/m<sup>3</sup> in closed car. Similarly, the maximum exposure concentration of NO2 was observed to be 312 μg/m<sup>3</sup> in bus and the minimum exposure concentration was 21 μg/m<sup>3</sup> in car. The concentration of elements in PM2.5 was in the order of Si > Na > Ca > Al ≥ K > S ≥ Cd, with Si and Cd concentration as 60% and < 1% of the PM2.5 concentration.


2019 ◽  
Vol 8 (3) ◽  
pp. 7922-7927

In Taiwan country Annan, Chiayi, Giran, and Puzi cities are facing a serious fine particulate matter (PM2.5) issue. To date the impressive advance has been made toward understanding the PM2.5 issue, counting special temporal characterization, driving variables and well-being impacted. However, notable research as has been done on the interaction of the content between the selected cities of Taiwan country for particulate matter (PM2.5) concentration. In this paper, we purposed a visualization technique based on this principle of the visualization, cross-correlation method and also the time-series concentration with particulate matter (PM2.5) for different cities in Taiwan. The visualization also shows that the correlation between the different meteorological factors as well as the different air pollution pollutants for particular cities in Taiwan. This visualization approach helps to determine the concentration of the air pollution levels in different cities and also determine the Pearson correlation, r values of selected cities are Annan, Puzi, Giran, and Wugu.


Author(s):  
Qing Tian ◽  
Mei Li ◽  
Scott Montgomery ◽  
Bo Fang ◽  
Chunfang Wang ◽  
...  

Background: Exposures to both ambient fine particulate matter (PM2.5) and extreme weather conditions have been associated with cardiovascular disease (CVD) deaths in numerous epidemiologic studies. However, evidence on the associations with CVD deaths for interaction effects between PM2.5 and weather conditions is still limited. This study aimed to investigate associations of exposures to PM2.5 and weather conditions with cardiovascular mortality, and further to investigate the synergistic or antagonistic effects of ambient air pollutants and synoptic weather types (SWTs). Methods: Information on daily CVD deaths, air pollution, and meteorological conditions between 1 January 2012 and 31 December 2014 was obtained in Shanghai, China. Generalized additive models were used to assess the associations of daily PM2.5 concentrations and meteorological factors with CVD deaths. A 15-day lag analysis was conducted using a polynomial distributed lag model to access the lag patterns for associations with PM2.5. Results: During the study period, the total number of CVD deaths in Shanghai was 59,486, with a daily mean of 54.3 deaths. The average daily PM2.5 concentration was 55.0 µg/m3. Each 10 µg/m3 increase in PM2.5 concentration was associated with a 1.26% (95% confidence interval (CI): 0.40%, 2.12%) increase in CVD mortality. No SWT was statistically significantly associated with CVD deaths. For the interaction between PM2.5 and SWT, statistically significant interactions were found between PM2.5 and cold weather, with risk for PM2.5 in cold dry SWT decreasing by 1.47% (95% CI: 0.54%, 2.39%), and in cold humid SWT the risk decreased by 1.45% (95% CI: 0.52%, 2.36%). In the lag effect analysis, statistically significant positive associations were found for PM2.5 in the 1–3 lag days, while no statistically significant effects were found for other lag day periods. Conclusions: Exposure to PM2.5 was associated with short-term increased risk of cardiovascular deaths with some lag effects, while the cold weather may have an antagonistic effect with PM2.5. However, the ecological study design limited the possibility to identify a causal relationship, so prospective studies with individual level data are warranted.


Author(s):  
Daoru Liu ◽  
Qinli Deng ◽  
Zeng Zhou ◽  
Yaolin Lin ◽  
Junwei Tao

Fine particulate matter (PM2.5) is directly associated with smog and has become the primary factor that threatens air quality in China. In order to investigate the variation patterns of PM2.5 concentrations in various regions of Wuhan city across different time spans, we analyzed continuous monitoring data from six monitoring sites in Wuhan city from 2013 to 2017. The results showed that the PM2.5 concentration from the various monitoring sites in the five-year period showed a decreasing trend. January, October, and December are the three months with relatively high mean monthly PM2.5 concentrations in the year, while June, July, and August are the three months with relatively low mean monthly PM2.5 concentrations in the year. The number of days with a daily mean concentration of 35–75 μg/m3 was the highest, while the number of days with a daily mean concentration of more than 250 μg/m3 was the lowest. PM2.5 accounted for a large proportion of the major pollutants and is the main source of air pollution in Wuhan city, with an average proportion of over 46%.


2018 ◽  
Vol 35 (2) ◽  
pp. 58-84 ◽  
Author(s):  
Yana Jin ◽  
Shiqiu Zhang

Fine particulate pollution (PM2.5) is a leading mortality risk factor in the People's Republic of China (PRC) and many Asian countries. Current studies of PM2.5 mortality have been conducted at the national and provincial levels, or at the grid-based micro level, and report only the exposure index or attributable premature deaths. Little is known about the welfare implications of PM2.5 mortality for urban areas. In this study, we estimate the total cost of PM2.5 mortality, the benefit of its reduction achieved through meeting various air quality targets, and the benefit of mortality reduction achieved through a uniform 10 micrograms per cubic meter decrease in PM2.5 concentration in the urban areas of 300 major cities in the PRC. Significant heterogeneity exists in welfare indicators across rich versus poor and clean versus dirty cities. The results indicate that cities in the PRC should accelerate the fine particulate pollution control process and implement more stringent air quality targets to achieve much greater mortality reduction benefits.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 420
Author(s):  
Earthea Nance

National environmental regulations lack short-term standards for variability in fine particulate matter (PM2.5); they depend solely on concentration-based standards. Twenty-five years of research has linked short-term PM2.5, that is, increases of at least 10 μg/m3 that can occur in-between regulatory readings, to increased mortality. Even as new technologies have emerged that could readily monitor short-term PM2.5, such as real-time monitoring and mobile monitoring, their primary application has been for research, not for air quality management. The Gulf oil spill offers a strategic setting in which regulatory monitoring, computer modeling, and stationary monitoring could be directly compared to mobile monitoring. Mobile monitoring was found to best capture the variability of PM2.5 during the disaster. The research also found that each short-term increase (≥10 μg/m3) in fine particulate matter was associated with a statistically significant increase of 0.105 deaths (p < 0.001) in people aged 65 and over, which represents a 0.32% increase. This research contributes to understanding the effects of PM2.5 on mortality during a disaster and provides justification for environmental managers to monitor PM2.5 variability, not only hourly averages of PM2.5 concentration.


Sign in / Sign up

Export Citation Format

Share Document