scholarly journals Natural and Anthropogenic Sources of Cadmium in Cacao Crop Soils in Santander, Colombia

Author(s):  
Valentina Joya-Barrero ◽  
Carme Huguet ◽  
Jillian Pearse

Abstract Cadmium (Cd) levels in cacao products from Santander, the main producing area in Colombia, are well above those permitted for export of cocoa products and may pose a potential health hazard. High Cd in cacao is related to the high content of the metal in beans, which in turn is linked to high concentrations of Cd in soils. Geochemical and petrographic analyses of fertilizer, soil and rock samples from three farms were carried out to determine the sources of Cd and soil characteristics that can affect its bioavailability, in order to identify strategies that may reduce Cd in cocoa. Autochthonous natural sources determine the Cd concentration in soils, with a high correlation between elevated Cd in sedimentary parental rocks and soil metal levels. While no industrial or mining inputs were present, an organic fertilizer was identified as a great allochthonous source of Cd in soils. High levels in the fertilizer were probably due to bioaccumulation of the element, since it was sourced from animals in the same area. The addition of crop waste to fertilize the soil may further contribute bioavailable Cd. Even though the pH range, high OM content and presence of Mn and K all diminish bioavailability, the high metal content in the farm soils still results in significant uptake by the cocoa plants and accumulation in the beans. We suggest that phytoremediation and biological amendments, as well as testing of fertilizers before application, could all be cost-effective solutions to reduce Cd levels in the final product.

1998 ◽  
Vol 168 (07) ◽  
pp. 767-791 ◽  
Author(s):  
N.G. Ptitsyna ◽  
G. Villoresi ◽  
L.I. Dorman ◽  
N. Iucci ◽  
Marta I. Tyasto

2007 ◽  
Vol 72 (7) ◽  
pp. 908-916 ◽  
Author(s):  
Payman Hashemi ◽  
Hatam Hassanvand ◽  
Hossain Naeimi

Sorption and preconcentration of Cu2+, Zn2+ and Fe3+ on a salen-type Schiff base, 2,2'- [ethane-1,2-diylbis(nitrilomethylidyne)]bis(2-methylphenol), chemically immobilized on a highly crosslinked agarose support, were studied. Kinetic studies showed higher sorption rates of Cu2+ and Fe3+ in comparison with Zn2+. Half-times (t1/2) of 31, 106 and 58 s were obtained for sorption of Cu2+, Zn2+ and Fe3+ by the sorbent, respectively. Effects of pH, eluent concentration and volume, ionic strength, buffer concentration, sample volume and interferences on the recovery of the metal ions were investigated. A 5-ml portion of 0.4 M HCl solution was sufficient for quantitative elution of the metal ions from 0.5 ml of the sorbent packed in a 6.5 mm i.d. glass column. Quantitative recoveries were obtained in a pH range 5.5-6.5 for all the analytes. The volumes to be concentrated exceeding 500 ml, ionic strengths as high as 0.5 mol l-1, and acetate buffer concentrations up to 0.3 mol l-1 for Zn2+ and 0.4 mol l-1 for Cu2+ and Fe3+ did not have any significant effect on the recoveries. The system tolerated relatively high concentrations of diverse ions. Preconcentration factors up to 100 and detection limits of 0.31, 0.16 and 1.73 μg l-1 were obtained for Cu2+, Zn2+ and Fe3+, respectively, for their determination by a flame AAS instrument. The method was successfully applied to the metal ion determinations in several river water samples with good accuracy.


Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 434
Author(s):  
Pascaline Bahati ◽  
Xuejun Zeng ◽  
Ferdinand Uzizerimana ◽  
Ariunsaikhan Tsoggerel ◽  
Muhammad Awais ◽  
...  

In the food industry, microbiological safety is a major concern. Mycotoxin patulin represents a potential health hazard, as it is heat-resistant and may develop at any stage during the food chain, especially in apple-based products, leading to severe effects on human health, poor quality products, and profit reductions. The target of the study was to identify and characterize an excellent adsorbent to remove patulin from apple juice efficiently and to assess its adsorption mechanism. To prevent juice fermentation and/or contamination, autoclaving was involved to inactivate bacteria before the adsorption process. The HPLC (high-performance liquid chromatography) outcome proved that all isolated strains from kefir grains could reduce patulin from apple juice. A high removal of 93% was found for juice having a 4.6 pH, 15° Brix, and patulin concentration of 100 μg/L by Lactobacillus kefiranofacien, named JKSP109, which was morphologically the smoothest and biggest of all isolates in terms of cell wall volume and surface area characterized by SEM (Scanning electron microscopy) and TEM (transmission electron microscopy). C=O, OH, C–H, and N–O were the main functional groups engaged in patulin adsorption indicated by FTIR (Fourier transform–infrared). E-nose (electronic nose) was performed to evaluate the aroma quality of the juices. PCA (Principal component analysis) results showed that no significant changes occurred between control and treated juice.


1979 ◽  
Vol 16 (6) ◽  
pp. 1196-1209 ◽  
Author(s):  
D. H. Loring

Total Co (3–22 ppm), Ni (4–160 ppm), V (4–168 ppm), and Cr (8–241 ppm) concentrations vary regionally and with textural differences in the sediments of the St. Lawrence estuary and Gulf of St. Lawrence. They are, except for local anomalies, at or near natural levels relative to their source rocks and other marine sediments.Chemical partition and mineralogical analyses indicate that small but biochemically significant quantities (2–24%) of the total element concentrations are potentially available to the biota and are most likely held by fine-grained organic material, hydrous iron oxides, and ion exchange positions in the sediments. In the upper estuary, nondetrital Ni, Cr, and V supplied from natural and anthropogenic (Cr) sources are apparently preferentially scavenged from solution by terrestrial organic matter and hydrous oxides and concentrated in fine-grained sediments deposited below the turbidity maximum. In the lower estuary, the fine-grained sediments are relatively enriched in nondetrital V supplied from anthropogenic sources in the Saguenay system. Elsewhere the sedimentation intensities of the nondetrital elemental contributions have remained relatively constant with fluctuations in total sediment intensity.Seventy-six to 98% of the total Co, Ni, Cr, and V is not, however, available to the biota, but held in various sulphide, oxide, and silicate minerals. The host minerals have accumulated at the same rate as other fine-grained detrital material except for some local anomalies. In the upper estuary, detrital V concentrations are highest in the sands as an apparent result of an enrichment of ilmenite and titaniferous magnetite from a nearby mineral deposit. In the open gulf, relatively high concentrations of Ni, Cr, and V occur in sediments from the Bay of Islands, Newfoundland, and probably result from the seaward dispersal of detrital Ni, Cr, and V bearing minerals from nearby ultrabasic rocks.


Author(s):  
Kaiming Guo ◽  
Firdoz Shaik ◽  
Jine Yang ◽  
Bin Jiang

Abstract Water splitting is considered as a potential sustainable and green technology for producing mass hydrogen and oxygen. A cost-effective self-supported stable electrocatalyst with excellent electrocatalytic performance in a wide pH range is greatly required for water splitting. This work reports on the synthesis and anchoring of Fe1CoxNiyP nanoparticles on vertically aligned reduced graphene oxide array (VrGO) via electroless plating. The catalytic activity of Fe1CoxNiyP nanoparticles is tuned finely by tailoring the cationic ratio of Co and Ni. Fe1Co2Ni1P/VrGO exhibits the lowest overpotential (58 and 110 mV) at 10 mA cm−2 and lowest tafel slope (31 and 33 mV dec−1) for hydrogen evolution reaction in 1.0 M KOH and 0.5 M H2SO4 respectively. Fe1Co1Ni2P/VrGO exhibits the lowest overpotential (173 mV) at 10 mA cm−2 with lowest tafel slope (47 mV dec-1) for oxygen evolution reaction. The enhanced performance of the electrocatalyst is attributed to improved electrical conductivity, synergistic effects and beneficial electronic states caused by the appropriate atomic ratio of Co and Ni in the bifunctional electrocatalyst. This study helps to explore the effect of variable cationic ratio in the cost-effective ternary iron group metal phosphides electrocatalysts to achieve enhanced electrocatalytic performance for water splitting in a wide pH range.


Sociobiology ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 5813
Author(s):  
Matan Shelomi ◽  
Bo-Jun Qiu ◽  
Lin-Ting Huang

An accumulation of questionable scientific reports on the use of natural plant extracts to control household pest insects, using biologically irrelevant experimental designs and extremely high concentrations, has resulted in a publication bias: “promising” studies claiming readily available plants can repel various insects, including social insects, despite no usable data to judge cost-effectiveness or sustainability in a realistic situation. The Internet provides a further torrent of untested claims, generating a background noise of misinformation. An example is the belief that cucumbers are “natural” ant repellent, widely reported in such informal literature, despite no direct evidence for or against this claim. We tested this popular assertion using peel extracts of cucumber and the related bitter melon as olfactory and gustatory repellents against ants. Extracts of both fruit peels in water, methanol, or hexane were statistically significant but effectively weak gustatory repellents. Aqueous cucumber peel extract has a significant but mild olfactory repellent effect: about half of the ants were repelled relative to none in a control. While the myth may have a grain of truth to it, as cucumber does have a mild but detectable effect on ants in an artificial setup, its potential impact on keeping ants out of a treated perimeter would be extremely short-lived and not cost-effective. Superior ant management strategies are currently available. The promotion of “natural” products must be rooted in scientific evidence of a successful and cost-effective implementation prospect.


2007 ◽  
Vol 50 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Mirian Ueda Yamaguchi ◽  
Rita de Cássia Pontello Rampazzo ◽  
Sueli Fumie Yamada-Ogatta ◽  
Celso Vataru Nakamura ◽  
Tânia Ueda-Nakamura ◽  
...  

The main objective of this study was to analyse the occurrence of yeasts and filamentous fungi in drinking water as well as to investigate their correlation with the indicator bacteria of faecal pollution. Yeasts were detected in 36.6% and 11.6% of the bottled mineral on water dispensers and tap water samples from municipal system, respectively. Twenty-one (35.0%) of bottled mineral water and two (3.3%) of tap water samples were positive for filamentous fungi. For bottled mineral water 12 (20.0%) of 60 samples were positive for total coliform, compared with 3(5.0%)out of 60 samples from tap water. The mineral water from dispensers was more contaminated than tap water. Strains belonging to the genera Candida identified to the species level were C. parapsilosis, C. glabrata and C. albicans. Thus, bottled mineral water from water dispensers and tap water could be considered a possible transmission route for filamentous fungi and yeasts, and could constitute a potential health hazard, mainly to immunocompromised indivuals.


2019 ◽  
Vol 70 (3) ◽  
pp. 382 ◽  
Author(s):  
Nidia I. Tobón Velázquez ◽  
Mario Rebolledo Vieyra ◽  
Adina Paytan ◽  
Kyle H. Broach ◽  
Laura M. Hernández Terrones

The aim of the study is to determine the distribution of trace and major elements in the water and in the sediments of the south part of the Bacalar Lagoon and to identify the sources of the trace elements and their changes over time. The western part of the lagoon water column is characterised by high concentrations of Ca2+, HCO3– and Sr2+, derived from groundwater input. In contrast, the eastern part of the lagoon is characterised by high concentrations of Mg2+, Na+ and Cl–. The lagoon is not affected by present-day seawater intrusion. Water column and sediment geochemical analyses performed in Bacalar Lagoon show clear spatial distribution of different parameters. The saturation index of the water column indicates three main groups: (1) a zone oversaturated with regard to aragonite, calcite and dolomite; (2) an undersaturated area where all three minerals are dissolving; and (3) an area with calcite equilibrium and undersaturation with regard to the other minerals. Herein we present the first measurements of trace element (Ba2+, Mn2+, K+, Ni2+, Zn2+) concentrations in carbonates obtained from sediments in Bacalar Lagoon. In order to evaluate whether the trace elements are derived from natural or anthropogenic sources, four pollution indices were calculated. The results confirmed that Bacalar Lagoon sediments are not contaminated with Ni2+, K+, Mn2+ and Ba2+, and that the Zn2+ seems to have a predominantly anthropogenic origin.


Planta Medica ◽  
2018 ◽  
Vol 85 (03) ◽  
pp. 185-194 ◽  
Author(s):  
Mei Wang ◽  
Amar Chittiboyina ◽  
Jon Parcher ◽  
Zulfiqar Ali ◽  
Paul Ford ◽  
...  

AbstractThe growing demand and commercial value of black pepper (Piper nigrum) has resulted in considerable interest in developing suitable and cost-effective methods for chemical characterization and quality evaluation purposes. In the current study, an extensive set of oil samples (n = 23) that were extracted by steam distillation from black pepper seeds was investigated to compare the chemical profiles of samples originating from nine major producing countries, as well as to identify potential chemical markers for quality evaluation. The twenty-two most abundant volatile compounds, mainly terpenes, in these oils were determined by conventional GC/MS analysis. Principal component analysis with this set of data revealed distinct clusters for samples that originated from China and Malaysia. Relatively low concentrations of sabinene (< 0.2%) and high concentrations of 3-carene (10.9 – 21.1%) were observed in these samples, respectively, compared to oil samples from other countries. The enantiomeric distributions of key terpene markers, viz., β-pinene, sabinene, limonene, and terpinen-4-ol, were determined by chiral GC/MS analysis. Interestingly, for these four monoterpenes, levo-isomers were found to be predominant, emphasizing the highly conserved enzymatic processes occurring in P. nigrum. Moreover, consistent enantiomeric ratios ((−) isomer/(+) isomer) of 92.2 ± 3.0% for β-pinene, 94.8 ± 2.8% for sabinene, 60.7 ± 1.1% for limonene, and 78.3 ± 1.3% for terpinen-4-ol were observed, independent of geographical location. These results demonstrate the potential of using stereospecific compositions as chiral signatures for establishing the authenticity and quality of black pepper oil.


Sign in / Sign up

Export Citation Format

Share Document