scholarly journals TiO2 Nanoparticles As Heterogeneous Catalyst For WCO Biodiesel Production: Engine Parameters Optimization and Prediction of Biodiesel/Diesel/Cadmium (II) Coordination Polymer Blends Fuel By Using Response Surface Methodology

Author(s):  
Medhat Elkelawy ◽  
Safaa El-din H. Etaiw ◽  
Ahmed Mohamed Radwan ◽  
Hitesh Panchal ◽  
Hagar Alm-Eldin Bastawissi

Abstract Nowadays, combustion technologies decarbonization, reduction of harmful emission, and improving thermal efficiency have gained more attention by using clean, sustainable, alternative, and reliable biofuels coupled with using nano particles technologies. Nano heterogeneous catalysts are new promising technologies for converting triglycerides (oil, fats,..etc) into biodiesel, which characterized with saving in the total cost of production. Titanium dioxide (TiO2) nano heterogeneous catalyst used to convert triglyceride represented in waste cooking oil (WCO) into FAME as bio-diesel, where bio-diesel yield fitted the ASTM. In the present research, the results show 95% as a maximum yield at optimum process conditions of 0.01 Wt.% TiO2 loading, 0.3 Wt.% NaoH, reaction temperature (60 ºC), reaction time (60 min), 10:1 methanol to oil volumetric percentage. Effect of mixing different percentage (35, and 70 ppm) of {[Cd (EIN)2(SCN)2]}, SCP 1, Cadmium (II coordination polymer as nanoparticle enhancer, with diesel fuel/biodiesel (60:40 v/v%) (D60B40) on the behavior of one-cylinder direct-injection diesel (DI) engine parameters were examined experimentally and analytically through RSM methodologies. The engine operating variables have been optimized by using CCD method to achieve an optimal BTE. Engine load and nano particles quantity were considered as process input variables to optimize BTE, UHC, and NOx emissions as engine responses. The quadratic regression models were significant and adequate statistically as indicated by the Analysis of variance (ANOVA). The obtained results from (RSM) optimizer indicated that BTE, NOx, and UHC have optimum values of 16.2605%, 544.9157 ppm, and 117.6023 ppm respectively, at 70 ppm of SCP 1 nanoparticles and 2.1919 Kw of break power as optimal predicted values. A validation examination was carried out and the percent of error was within the limit of 5%. BTE, UHC, and NOx have an error percentage of 2.05%, 1.03%, and 1.63%, respectively.

2020 ◽  
Vol 991 ◽  
pp. 117-122
Author(s):  
Bachrun Sutrisno ◽  
Atik Dian Nafiah ◽  
Indah Suci Fauziah ◽  
Winarto Kurniawan ◽  
Hirofumi Hinode ◽  
...  

In the present study, the CaO/Natural Dolomite as a heterogeneous catalyst was applied to synthesize biodiesel from coconut oil. The physico-characteristics of CaO/Natural Dolomite catalyst were determined using X-ray diffraction (XRD), X-Ray Fluorescence, and porosity analysis (specific surface area, average pore size diameter and total pore volume). The performance of CaO/Natural Dolomite catalyst was examined in a batch reactor for transesterification reaction of coconut oil with methanol. From the experiments, the optimum process conditions were achieved at a 60°C of reaction temperature, a 5 wt.% of catalyst amount, and 6 : 1 of methanol to coconut oil mass ratio. The CaO/Natural Dolomite catalyst exhibits high catalytic activity and reliable to be applied in biodiesel synthesis as a heterogeneous base catalyst.


2016 ◽  
Vol 707 ◽  
pp. 161-165 ◽  
Author(s):  
Sarina Sulaiman ◽  
Siti Rohana

This paper studies the effect of calcination time and temperature of mixed waste catalyst for optimization of FAME yield. Fish bone and mixture of coconut waste and eggshells were used to catalyzed the transesterification process. The parameter was tested on different calcination condition and the result shows that the optimum condition was achieved at condition 800 °C, 2 hours was 80.3 wt% of FAME yield for mixed coconut waste and eggshells and 85 wt% were obtained at 900 °C for fish bone catalyst at 225 rpm, 12:1 methanol to oil ratio and amount of catalyst, 3wt%. It can be concluded that waste heterogeneous catalyst exhibits as a cheaper substitute to the homogenous catalyst.


2011 ◽  
Vol 142 ◽  
pp. 42-45
Author(s):  
Ze Min Xu ◽  
Yu Jing Sun

In order to simplify the pretreatment process in detection of pesticide residues in vegetables and improve the extraction recovery, an ultrahigh pressure technique was adopted in pretreatment experiments on organophosphorus pesticide residues in cabbage, and on the basis of single-factor test, orthogonal pre-conditions were optimized. The results showed that: The optimum process conditions for ultrahigh pressure extraction of dimethoate in cabbage at room temperature are: pressure of 400MPa, extraction solvent volume of 60ml, the holding time of 4min, recovery rate up to 91.3%, compared with the conventional homogenization method, extraction efficiency improved significantly.


2016 ◽  
Vol 709 ◽  
pp. 57-60
Author(s):  
Fei Ling Pua ◽  
Kah Thong Looi ◽  
Shamala Gowri Krishnan ◽  
Sharifah Nabihah

In recent years, attention has been drawn to produce heterogeneous catalyst to replace homogeneous catalyst in biodiesel industry. This study was focused on the synthesis of three different types of alginate based heterogeneous catalyst (Ferric-alginate, Copper-alginate, and Nickel alginate) and the effect of the catalyst on esterification of oleic acid. Morphology and elemental analysis was conducted to investigate the properties of the catalyst. The new heterogeneous catalysts were used to catalyze the esterification of oleic acid at reaction temperature of 60°C and 2 hours reaction time. Fe-alginate has achieved the highest free fatty acids (FFAs) conversation rate of 82.03%. The results and findings proved that transition metal-alginate heterogeneous catalyst has the potential and ability to esterify the free fatty acids prior biodiesel production from high free fatty acids feedstock.


Author(s):  
A. A. Sosnovskaya ◽  
V. L. Fleisher ◽  
Y. V. Borkina

Optimization of the liquid-phase oxidation of α-pinene was carried out using the Box plan. It was found that an increase in the temperature of the oxidation process in the interval 55–85 °C leads to an increase in the amount of polymers from 45 to 55 %, and a decrease in the air flow rate from 1000 to 600 ml/min – to a 10 % decrease in terpenic oxygencontaining compounds (verbenol, verbenon, epoxy α-pinene). Increasing the duration of oxidation from 5 to 15 h leads to a reduction in the content of α-pinene from 70 to 48 %, which indicates its high conversion. The results of the experimental plan have been processed, the optimum process conditions found, which ensure the maximum yield terpenic oxygencontaining compounds and a high conversion α-pinene with the minimum content of polymers in the oxidation products, have been calculated and confirmed in practice. It was established that at a temperature of 70–75 °C, an air flow rate of 1000 ml/min and an oxidation time of 5 h, the quantitative content of the main products was: terpenic oxygen-containing compounds – 27.04 %, monomers – 69.70 %, polymers – 30.30 %.


2015 ◽  
Vol 4 (2) ◽  
pp. 20-26
Author(s):  
M. Yusuf Ritonga ◽  
Anda Putra

Biodiesel is a low-emission diesel fuel substitute made from renewable resources and waste oil. The objective of the study was to study of CaO catalysts in biodiesel production from RBDPO with clam shell catalyst through calcinations of CaCO3 with temperature of 900oC and 3.5 hours will be obtained CaO content of 68,35%. Effect of various process variables such as type of catalyst, reaction time, amount of catalyst and molar ratio of Methanol / oil were investigated. The biodiesel properties like methyl ester content, density, viscosity, and flash point was compared with Indonesian Standard (SNI). Under the best condition, the maximum yield, purity, density, viscosity and flash point of biodiesel RBDPO respectively for 84,0179%, 97,98%, 875,47 kg/m3, 4,99 cSt and 122oC was obtained by using 12:1 molar ratio of methanol to RBDPO oil at 60oC, for a reaction time of 2 hours in the presence 5 wt% of CaO catalyst. The results of this research showed that heterogeneous catalysts CaO derived from clam shell suitable to be used as catalysts in biodiesel production.


2021 ◽  
Vol 25 (1) ◽  
pp. 621-630
Author(s):  
Pascal Mwenge ◽  
Hilary Rutto ◽  
Christopher Enweremadu

Abstract Biodiesel is an environmentally friendly fuel, produced by a transesterification process using homogeneous catalyst which causes water pollution and cannot be recycled. The present study utilizes industrial brine sludge waste (IBSW) as a heterogeneous catalyst in the transesterification of waste cooking oil (WCO) into biodiesel. One variable at a time design was applied to optimize the transesterification process. The process variables were varied as follows: methanol to oil weight ratio (10–50 %), reaction time (0.5–2.5 h), reaction temperature (30–90 °C) and catalyst to oil weight ratio (0.84–4.2 %). The IBSW before and after calcination and the transesterification process was characterized using X-ray fluorescence (XRF), Fourier-transform infrared spectroscopy and scanning electron microscope (SEM). Biodiesel was produced at maximum yield of 95.51 wt% at reaction time, temperature methanol to oil weight ratio, and catalyst to oil weight ratio of 1 hour, 60 °C, 30 wt%, and 2.52 wt% respectively. The FTIR and SEM results confirms that before and after the transesterification process the modification of IBSW took place. Using the ideal process conditions, biodiesel was produced and vital fuel properties such as viscosity, density, pour point and flash point were measured and were found to be within the specification as per American Society for Testing and Material (ASTM) standards for biodiesel. The reusability of the IBSW catalyst was tested by recycling and it can be established that the catalyst can be utilized up to four times without affecting its catalytic activity.


2017 ◽  
Vol 4 (2) ◽  
pp. 142-157 ◽  
Author(s):  
A.S. Yusuff ◽  
O.D. Adeniyi ◽  
M.A. Olutoye ◽  
U.G. Akpan

Biodiesel has been considered as one of the interesting alternative and environmentally benign fuels. The development of environmental friendly heterogeneous catalyst for the esterification/transesterification process seems to be promising route and the reason why it is more preferred to conventional homogeneous and enzymatic catalyzed reactions is discussed. However, investigation on heterogeneous catalyst for biodiesel production is extensively carried out based on previous research studies. In order to reduce cost of biodiesel production, evaluation and characterization of heterogeneous catalytic materials before and after its preparation provide facts on the process that have significant impact on the desired activity and selectivity properties. This review study provides a comprehensive overview of common process techniques usually employ in producing biodiesel. Different materials that serve as sources of heterogeneous catalysts to transesterify oils or fats for production of biodiesel with emphasis on selection criteria of solid catalytic materials are also highlighted. The potential heterogeneous catalyst that could be derived from anthill, various methods of preparing solid catalysts, as well as reusability and leaching analysis are discussed in details


2021 ◽  
Vol 75 (5) ◽  
pp. 257-276
Author(s):  
Ana Velickovic ◽  
Jelena Avramovic ◽  
Milan Kostic ◽  
Jugoslav Krstic ◽  
Olivera Stamenkovic ◽  
...  

Wheat straw ash (WSA) was investigated as a new catalyst in biodiesel production from sunflower oil. The catalyst was characterized by temperature-programmed decomposition, X- ray powder diffraction, Hg porosimetry, N2 physisorption, and scanning electron microscopy - energy dispersive X-ray spectroscopy methods. The methanolysis reaction was tested in the temperature range of 55?65?C, the catalyst loading range 10?20 % of the oil weight, and the methanol-to-oil molar ratio range 18 : 1?24 : 1. The reaction conditions of the sunflower oil methanolysis over WSA were optimized by using the response surface methodology in combination with the historical experimental design. The optimum process conditions ensuring the highest fatty acid methyl esters (FAME) content of 98.6 % were the reaction temperature of 60.3?C, the catalyst loading of 11.6 % (based on the oil weight), the methanol-to-oil molar ratio of 18.3 :1, and the reaction time of 124 min. The values of the statistical criteria, such as coefficients of determination (R2 = 0.811, R2 = 0.789, R2 = 0.761) and the mean relative percent deviation (MRPD) value of 10.6 % (66 data) implied the acceptability and precision of the developed model. The FAME content after 4 h of reaction under the optimal conditions decreased to 37, 12, and 3 %, after the first, second, and third reuse, respectively.


Sign in / Sign up

Export Citation Format

Share Document