scholarly journals Genome Mining Revealed Polyhydroxybutyrate Biosynthesis by Ramlibacter Agri Sp. Nov., Isolated from Agriculture Soil in Korea

Author(s):  
Ram Hari Dahal ◽  
Jungmin Kim ◽  
Dhiraj Kumar Chaudhary ◽  
Dong-Uk Kim ◽  
Hyein Jang ◽  
...  

Abstract A white-colony-forming, aerobic, motile and Gram-stain-negative bacterium, designated G-1-2-2T was isolated from soil of agriculture field near Kyonggi University, Republic of Korea. Strain G-1-2-2T synthesize the polyhydroxybutyrate and could grow at 10–35°C. The phylogenetic analysis of its 16S rRNA gene sequence, strain G-1-2-2T formed a lineage within the family Comamonadaceae and clustered as a member of the genus Ramlibacter. The 16S rRNA gene sequence of strain G-1-2-2T showed high sequence similarities with Ramlibacter ginsenosidimutans BXN5-27T (97.9%), Ramlibacter monticola G-3-2T (97.9%) and Ramlibacter alkalitolerans CJ661T (97.4%). The sole respiratory quinone was ubiquinone-8 (Q-8). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, and an unidentified phospholipid. The principal cellular fatty acids were C16:0, cyclo-C17:0, summed feature 3 (C16:1ω7c and/or C16:1ω6c) and summed feature 8 (C18:1ω7c and/or C18:1ω6c). The genome of strain G-1-2-2T was 7,200,642 bp long with 13 contigs, 6,647 protein-coding genes, and DNA G+C content of 68.9%. The average nucleotide identity and in silico DNA–DNA hybridization values between strain G-1-2-2T and closest members were ≤81.2 and 24.1%, respectively. The genome of strain G-1-2-2T showed eight putative biosynthetic gene clusters responsible for various secondary metabolites. Genome mining revealed the presence of atoB, atoB2, phaS, phbB, phbC, bhbD genes in the genome which are responsible for polyhydroxybutyrate biosynthesis. Based on these data, strain G-1-2-2T represents a novel species in the genus Ramlibacter, for which the name Ramlibacter agri sp. nov. is proposed. The type strain is G-1-2-2T (= KACC 21616T = NBRC 114389T).

2021 ◽  
Author(s):  
Tomoyuki Konishi ◽  
Tomohiko Tamura ◽  
Toru Tobita ◽  
Saori Sakai ◽  
Namio Matsuda ◽  
...  

Abstract Gram-positive, rod-shaped, spore-forming, thermophilic, acidophilic bacterium, designated strain skT53T, was isolated from farm soil in Tokyo, Japan. The strain grew aerobically at 37–55°C (optimum 50°C) and pH 4.0–6.0 (optimum 5.0). Phylogenetic analysis of the 16S rRNA gene sequence showed that the isolate was most closely related to the type strain of Effusibacillus consociatus (94.3% similarity). The G + C content of the genomic DNA was 48.22 mol%. MK-7 was the predominant respiratory quinone. The major fatty acids were anteiso-C15:0, iso-C15:0, iso-C16:0 and C18:3ω6c. The results of phenotypic and chemotaxonomic, 16S rRNA gene sequence similarity, and whole genome analyses support strain skT53T as representing a novel species of Effusibacillus dendaii sp. nov. is proposed. The type strain is strain skT53T (= NBRC 114101T = TBRC 11241T).


2006 ◽  
Vol 56 (4) ◽  
pp. 841-845 ◽  
Author(s):  
Shams Tabrez Khan ◽  
Yasuyoshi Nakagawa ◽  
Shigeaki Harayama

The taxonomic position of four Gram-negative, rod-shaped, golden-yellow-coloured bacteria isolated from marine sediments was determined. Analysis of the almost complete 16S rRNA gene sequences indicated that these isolates belong to the family Flavobacteriaceae. An unclassified bacterium, NBRC 15975, was found to be the closest relative, showing 16S rRNA gene sequence similarity of 93 %; other related genera shared only 87·9–90·5 % similarity. In contrast, the four isolates shared high levels of 16S rRNA gene sequence similarity (99·3–99·7 %) and high DNA–DNA reassociation values (93–104 %). The isolates could be differentiated phenotypically from other genera by the abilities to reduce nitrate and to degrade gelatin, casein and starch. The only respiratory quinone was MK-6, and the major fatty acids were iso-C15 : 0, iso-C15 : 1, anteiso-C15 : 0, iso-C17 : 1 ω9c and iso-C17 : 0 3-OH. The DNA G+C content was 38–40 mol%. Differentiating phenotypic characteristics and large phylogenetic distances between the isolates and previously published genera indicated that the isolates constitute a novel genus, for which the name Sediminicola gen. nov. is proposed. The type species is Sediminicola luteus sp. nov. (type strain CNI-3T=NBRC 100966T=LMG 23246T).


2010 ◽  
Vol 60 (6) ◽  
pp. 1383-1386 ◽  
Author(s):  
Ying-Yi Huo ◽  
Xue-Wei Xu ◽  
Heng-Lin Cui ◽  
Min Wu

A Gram-stain-positive, halotolerant, neutrophilic, rod-shaped bacterium, strain MF38T, was isolated from a saline–alkaline soil in China and subjected to a polyphasic taxonomic characterization. The isolate grew in the presence of 0–15 % (w/v) NaCl and at pH 6.5–8.5; optimum growth was observed with 3.0 % (w/v) NaCl and at pH 7.0. Chemotaxonomic analysis showed menaquinone MK-7 as the predominant respiratory quinone and anteiso-C15 : 0, anteiso-C17 : 0, iso-C15 : 0, C17 : 0 and C16 : 0 as major fatty acids. The genomic DNA G+C content was 35.3 mol%. 16S rRNA gene sequence similarities of strain MF38T with type strains of described Gracilibacillus species ranged from 95.3 to 97.7 %. Strain MF38T exhibited the closest phylogenetic affinity to the type strain of Gracilibacillus dipsosauri, with 97.7 % 16S rRNA gene sequence similarity. The DNA–DNA reassociation between strain MF38T and G. dipsosauri DSM 11125T was 45 %. On the basis of phenotypic and genotypic data, strain MF38T represents a novel species of the genus Gracilibacillus, for which the name Gracilibacillus ureilyticus sp. nov. (type strain MF38T =CGMCC 1.7727T =JCM 15711T) is proposed.


2007 ◽  
Vol 57 (10) ◽  
pp. 2267-2271 ◽  
Author(s):  
Ivone Vaz-Moreira ◽  
Cátia Faria ◽  
M. Fernanda Nobre ◽  
Peter Schumann ◽  
Olga C. Nunes ◽  
...  

Two bacterial strains, PC-142 and PC-147T, isolated from poultry litter compost, were characterized with respect to their phenetic and phylogenetic characteristics. The isolates were endospore-forming rods that were reddish in colour after Gram staining. They were catalase- and oxidase-positive, were able to degrade starch and gelatin and grew at 15–40 °C and pH 5.5–10.0. The predominant fatty acids were anteiso-C15 : 0, iso-C15 : 0 and iso-C16 : 0, the major respiratory quinone was menaquinone MK-7, the cell-wall peptidoglycan was of the A1γ type and the G+C content of the DNA was 58 mol%. The 16S rRNA gene sequence analysis and phenetic characterization indicated that these organisms belong to the genus Paenibacillus, with Paenibacillus pasadenensis SAFN-007T as the closest phylogenetic neighbour (97.5 %). Strains PC-142, PC-147T and P. pasadenensis SAFN-007T represent a novel lineage within the genus Paenibacillus, characterized by a high DNA G+C content (58–63 mol%). The low levels of 16S rRNA gene sequence similarity with respect to other taxa with validly published names and the identification of distinctive phenetic features in the two isolates indicate that strains PC-142 and PC-147T represent a novel species of the genus Paenibacillus, for which the name Paenibacillus humicus sp. nov. is proposed. The type strain is PC-147T (=DSM 18784T =NBRC 102415T =LMG 23886T).


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2453-2458 ◽  
Author(s):  
Gaiyun Zhang ◽  
Yanliu Yang ◽  
Shuang Wang ◽  
Zhilei Sun ◽  
Kailin Jiao

A Gram-stain-negative, aerobic, non-motile, rod-shaped bacterium, designated strain F15T, was isolated from a deep-sea sediment of the western Pacific Ocean. The temperature, pH and NaCl ranges for growth were 4–50 °C, pH 6–11 and 0–10 % (w/v), respectively. Strain F15T showed the highest 16S rRNA gene sequence similarity to Sagittula stellata E-37T (96.4 %), followed by Ponticoccus litoralis CL-GR66T (96.4 %), Antarctobacter heliothermus EL-219T (96.3 %) and Thalassococcus lentus YCS-24T (96.0 %). Phylogenetic analysis based on 16S rRNA gene sequence data showed that strain F15T formed a lineage within the family Rhodobacteraceae of the class Alphaproteobacteria. The polar lipid profile of strain F15T comprised significant amounts of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, one unidentified glycolipid and one unidentified phospholipid. The predominant cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c, 40.2 %), anteiso-C15 : 0 (30.4 %) and anteiso-C17 : 0 (9.7 %). The genomic DNA G+C content of strain F15T was 60.2 mol% and the major respiratory quinone was Q-10. On the basis of phenotypic, phylogenetic and chemotaxonomic data, strain F15T is considered to represent a novel species of a new genus within the family Rhodobacteraceae, for which the name Alkalimicrobium pacificum gen. nov., sp. nov. is proposed. The type strain is F15T ( = LMG 28107T = JCM 19851T = CGMCC 1.12763T = MCCC 1A09948T).


2007 ◽  
Vol 57 (5) ◽  
pp. 1108-1112 ◽  
Author(s):  
Ivone Vaz-Moreira ◽  
M. Fernanda Nobre ◽  
Olga C. Nunes ◽  
Célia M. Manaia

A bacterial strain (E4FC31T) isolated from treated municipal wastewater was characterized phenotypically and phylogenetically. Cells were Gram-negative, curved rods with a polar flagellum. The isolate was catalase-, oxidase- and arginine dihydrolase-positive, and able to grow between 15 and 45 °C and between pH 5.5 and 9.0. The predominant fatty acids were C16 : 1/iso-C15 : 0 2-OH and C16 : 0, the major respiratory quinone was ubiquinone 8 and the G+C content of the genomic DNA was 63 mol%. 16S rRNA gene sequence analysis indicated that strain E4FC31T belonged to the class Betaproteobacteria and was a member of the family Neisseriaceae. Its closest phylogenetic neighbours were Aquitalea magnusonii and Chromobacterium violaceum (<94 % 16S rRNA gene sequence similarity). Phylogenetic analysis and phenotypic characteristics of strain E4FC31T suggest that it represents a novel species of a new genus, for which the name Gulbenkiania mobilis gen. nov., sp. nov. is proposed. The type strain of Gulbenkiania mobilis is E4FC31T (=DSM 18507T=LMG 23770T).


2011 ◽  
Vol 61 (5) ◽  
pp. 1114-1117 ◽  
Author(s):  
Ya Wen ◽  
Xing Huang ◽  
Yu Zhou ◽  
Qing Hong ◽  
Shunpeng Li

A novel Gram-negative, aerobic, coccoid-shaped strain designated S 113T was isolated from a polluted-soil sample collected in Jiangsu Province, China. A polyphasic taxonomic study including phylogenetic analysis based on the 16S rRNA gene sequence and determination of phenotypic characteristics was performed on the new isolate. The highest 16S rRNA gene sequence similarity was 96.8 %, with Hansschlegelia plantiphila S1 T. The predominant respiratory quinone was ubiquinone 10 (Q-10). The major fatty acids were C18 : 1ω7c and C16 : 0. The G+C content of the DNA was about 65.7 mol%. DNA–DNA hybridization experiments showed 44.9 % relatedness for strain S 113T with its closest relative, H. plantiphila NCIMB 14035T. The dominant phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine and phosphatidylcholine. The results of our polyphasic taxonomic analysis indicate that strain S 113T represents a novel species within the genus Hansschlegelia, for which the name Hansschlegelia zhihuaiae sp. nov. is proposed. The type strain is S 113T ( = DSM 18984T  = CCTCC AB 206143T  = KCTC 12880T).


2010 ◽  
Vol 60 (10) ◽  
pp. 2415-2419 ◽  
Author(s):  
Ivone Vaz-Moreira ◽  
Vânia Figueira ◽  
Ana Rita Lopes ◽  
Rüdiger Pukall ◽  
Cathrin Spröer ◽  
...  

Two bacterial strains, MC-246T and MC-247, were isolated from municipal urban waste compost and characterized by a polyphasic approach. Both isolates were Gram-stain-variable, endospore-forming rods that were catalase-, oxidase- and β-galactosidase-positive, and able to grow at 25–50 °C and pH 7.0–9.0, with optimum growth at 37 °C and pH 7. The predominant cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0, iso-C16 : 0, anteiso-C17 : 0 and iso-C17 : 0; the major respiratory quinone was menaquinone MK-7; the cell wall peptidoglycan was of type A1γ; and the DNA G+C content was 49 mol%. These characteristics, as well as data from 16S RNA gene sequence analysis, showed that these strains were affiliated with the genus Paenibacillus; the type strains of Paenibacillus ginsengarvi and Paenibacillus hodogayensis were among their closest neighbours (<94.2 % sequence similarity). Nevertheless, the hypothesis that strains MC-246T and MC-247 could represent a novel species was supported by the low 16S rRNA gene sequence similarity values shared with other members of the genus Paenibacillus and by the observation of distinct biochemical and physiological traits. Strains MC-246T and MC-247 shared 99.6 % 16S rRNA gene sequence similarity and showed almost identical MALDI-TOF mass spectra, but could be distinguished at the phenotypic and genotypic level. However, DNA–DNA hybridization between strains MC-246T and MC-247 resulted in values above 70 % indicating that both organisms represent a single species, for which the name Paenibacillus residui sp. nov. is proposed; the type strain is MC-246T (=DSM 22072T =CCUG 57263T).


2011 ◽  
Vol 61 (4) ◽  
pp. 823-827 ◽  
Author(s):  
Ming-Hui Chen ◽  
Shih-Yi Sheu ◽  
Chaolun Allen Chen ◽  
Jih-Terng Wang ◽  
Wen-Ming Chen

A bacterial strain, designated SW6T, was isolated from the reef-building coral Isopora palifera, collected from seawater off the coast of southern Taiwan, and characterized using a polyphasic taxonomic approach. Strain SW6T was Gram-negative, aerobic, beige coloured, rod-shaped and motile by monopolar flagella. 16S rRNA gene sequence studies showed that the strain clustered closely with Shimia marina JCM 13038T (97.9 % 16S rRNA gene sequence similarity). Strain SW6T required NaCl for growth and exhibited optimal growth at 25–30 °C and 3–4 % NaCl. The predominant cellular fatty acid was summed feature 8 (C18 : 1ω7c/C18 : 1ω6c; 64.1 %). The major respiratory quinone was ubiquinone Q-10 and the DNA G+C content was 54.9 mol%. The results of physiological and biochemical tests allowed clear phenotypic differentiation of this isolate from previously described species of the genus Shimia. It is evident from the genotypic, phenotypic and chemotaxonomic data that the new strain should be classified as a representative of a novel species in the genus Shimia. The name proposed for this taxon is Shimia isoporae sp. nov.; the type strain is SW6T ( = LMG 25377T = BCRC 80085T).


2012 ◽  
Vol 62 (2) ◽  
pp. 370-375 ◽  
Author(s):  
Yan-Jiao Zhang ◽  
Xi-Ying Zhang ◽  
Hui-Lin Zhao ◽  
Ming-Yang Zhou ◽  
Hui-Juan Li ◽  
...  

A protease-producing marine bacterium, designated CF12-14T, was isolated from sediment of the South China Sea. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain CF12-14T formed a separate lineage within the genus Idiomarina (Gammaproteobacteria). The isolate showed the highest 16S rRNA gene sequence similarity with Idiomarina salinarum ISL-52T (94.7 %), Idiomarina seosinensis CL-SP19T (94.6 %) and other members of the genus Idiomarina (91.9–94.6 %). Cells were Gram-negative, aerobic, flagellated, straight or slightly curved, and often formed buds and prosthecae. Strain CF12-14T grew at 4–42 °C (optimum 30–35 °C) and with 0.1–15 % (w/v) NaCl (optimum 2–3 %). The isolate reduced nitrate to nitrite and hydrolysed DNA, but did not produce acids from sugars. The predominant cellular fatty acids were iso-C15 : 0 (27.4 %), iso-C17 : 0 (16.0 %) and iso-C17 : 1ω9c (15.8 %). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The major respiratory quinone was ubiquinone 8. The DNA G+C content was 50.4 mol%. The phylogenetic, phenotypic and chemotaxonomic data supported the conclusion that CF12-14T represents a novel species of the genus Idiomarina, for which the name Idiomarina maris sp. nov. is proposed. The type strain is CF12-14T ( = CCTCC AB 208166T = KACC 13974T).


Sign in / Sign up

Export Citation Format

Share Document