scholarly journals Utilizing Multi-Temporal Thermal Data To Assess Environmental Land Degradation Impacts: Example From Suez Canal Region, Egypt.

Author(s):  
Mohamed Arnous ◽  
Basma Mansour

Abstract Land surface temperature (LST) analysis of Satellite data is critical for studying the impacts of geo-environmental, hydrometeorological, and land degradation. However, challenges arise to resolve the LST and ground field data resulting from the constant development of land use and land cover (LULC). This study aims to monitor, analyze, assess, and map the environmental land degradation impacts utilizing image processing and GIS tools of space-borne thermal data and fieldwork. Two thermal and optical sets of multi-temporal Landsat TM+5 and TIRS+8 satellite data dated 1984 and 2018 were used to test, detect, and map the thermal and LULC change and their land degradation in the Suez Canal region (SCR). The LULC classification was categorized into seven classes: water bodies, urban, agricultural land, barren land, wetland, clay, and salt crust. LULC and LST change detection and mapping results revealed that the impervious surface, industrial area, saline soil, and urban area have high LST, while wetlands, vegetation cover, and water bodies suffered low LST. The spectral, LST profiles and statistical analyses examined the association between LST and LULC deriving factors. The cluster analyses defined the relationship between LST and LC patterns at the LU level, where the fast transformation of LULC had significant changes in LST. According to these analyses and the fieldwork observations, the SCR was divided into six main areas. These areas vary in LST in association with land degradation and hydro-environmental impacts such as rising groundwater levels, salt accumulation, active seismic fault zones, water pollution, and urban and agricultural activities.

2020 ◽  
Vol 3 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Abdulla Al Kafy ◽  
Abdullah Al-Faisal ◽  
Mohammad Mahmudul Hasan ◽  
Md. Soumik Sikdar ◽  
Mohammad Hasib Hasan Khan ◽  
...  

Urbanization has been contributing more in global climate warming, with more than 50% of the population living in cities. Rapid population growth and change in land use / land cover (LULC) are closely linked. The transformation of LULC due to rapid urban expansion significantly affects the functions of biodiversity and ecosystems, as well as local and regional climates. Improper planning and uncontrolled management of LULC changes profoundly contribute to the rise of urban land surface temperature (LST). This study evaluates the impact of LULC changes on LST for 1997, 2007 and 2017 in the Rajshahi district (Bangladesh) using multi-temporal and multi-spectral Landsat 8 OLI and Landsat 5 TM satellite data sets. The analysis of LULC changes exposed a remarkable increase in the built-up areas and a significant decrease in the vegetation and agricultural land. The built-up area was increased almost double in last 20 years in the study area. The distribution of changes in LST shows that built-up areas recorded the highest temperature followed by bare land, vegetation and agricultural land and water bodies. The LULC-LST profiles also revealed the highest temperature in built-up areas and the lowest temperature in water bodies. In the last 20 years, LST was increased about 13ºC. The study demonstrates decrease in vegetation cover and increase in non-evaporating surfaces with significantly increases the surface temperature in the study area. Remote-sensing techniques were found one of the suitable techniques for rapid analysis of urban expansions and to identify the impact of urbanization on LST.


2019 ◽  
Vol 8 (2) ◽  
pp. 3753-3755

The district Gurugram in the state Haryana has seen significant extension & development during the last few years. In this paper, the change in land-use/cover has been estimated with time range of 2007 - 2017 and the change detection was quantified. The land-use/cover data generated through satellite imagery has been classified into five major classes i.e., (i) Built-up land (ii) Water Bodies (iii) Barren Land (iv) Agricultural Land (v) Vegetation. The investigation was helped out through Geoinformatics approach by using IRS-P6- LISS-III sensor of 2007 and IRS-P6-LISS-IV sensor of 2017. Observing of land-use/spread mirrored that changes were more noteworthy in degree over the time range of 10 years in the land under various classes. The most sensational changes are the increase in built-up land and barren land. Apart from this decrease in agricultural, water bodies and vegetation cover area also. Results demonstrates an expansive change in the territory of various land use classifications amid the period from 2007 to 2017.The agriculture land covering an area of about 55.27% in 2007 reduced to 43.42% in 2017. The built up area increased from 15.97 % in 2007 to 30.23 in 2017. The barren land area increased from 6.45 % in 2007 to 16.97 in 2017 The Water bodies decreased from 4.65 % in 2007 to 1.05 % in 2017. The vegetation area has also decreased from 17.66 % in 2007 to 8.33 % in 2017. Urban extension and various anthropogenic exercises have brought genuine misfortunes of agricultural land, vegetation and water bodies.


2021 ◽  
pp. 194-200
Author(s):  
Darshana Rawal ◽  
Vishal Gupta

Spatio-temporal changes in land use land cover (LULC) have been relevant factors in causing the changes in Urban Heat Island (UHI) pattern across rural and urban areas all over the world. Studies conducted have shown that the relation between LULC on scale of the UHI can be an important factor assessing the condition not only for a country but for environment of a city also. Over the years it is reflected in health of vegetation and urbanization pattern of cities. As the thermal remote sensing has been evolved, the measurement of the temperature through satellite products has become possible. Thermal data derived through remote sensing gives us birds-eye-view to see how the thermal data varies in the entire city. In this study such relations are shown over Ahmedabad city of India for the period of 2007 to 2020 using Landsat series satellite data. Land Surface Temperature (LST) is calculated using Google Earth Engine Platform Surface Brightness Temperature for Landsat data and using Radiative Transfer Equation for Landsat data. LST is correlated with land use land cover mainly Built-up, Vegetation, Barren land, Water & Other and corresponding Land Use and Land Cover respectively, and it is found that LST is positively related with all indices except for Normalize Difference Vegetation Index (NDVI) with strong negative correlation and R 2 of 0.51.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Farhan Khan ◽  
Bhumika Das ◽  
R. K. Mishra ◽  
Brijesh Patel

Abstract Remote sensing and Geographic Information System (GIS) are the most efficient tools for spatial data processing. This Spatial technique helps in generating data on natural resources such as land, forests, water, and their management with planning. The study focuses on assessing land change and surface temperature for Nagpur city, Maharashtra, for two decades. Land surface temperature and land use land cover (LULC) are determined using Landsat 8 and Landsat 7 imageries for the years 2000 and 2020. The supervised classification technique is used with a maximum likelihood algorithm for performing land classification. Four significant classes are determined for classification, i.e., barren land, built-up, vegetation and water bodies. Thermal bands are used for the calculation of land surface temperature. The land use land cover map reveals that the built-up and water bodies are increasing with a decrease in vegetation and barren land. Likewise, the land surface temperature map showed increased temperature for all classes from 2000 to 2020. The overall accuracy of classification is 98 %, and the kappa coefficients are 0.98 and 0.9 for the years 2000 and 2020, respectively. Due to urban sprawl and changes in land use patterns, the increase in land surface temperature is documented, which is a global issue that needs to be addressed.


Author(s):  
J. Susaki ◽  
H. Sato ◽  
A. Kuriki ◽  
K. Kajiwara ◽  
Y. Honda

Abstract. This paper examines algorithms for estimating terrestrial albedo from the products of the Global Change Observation Mission – Climate (GCOM-C) / Second-generation Global Imager (SGLI), which was launched in December 2017 by the Japan Aerospace Exploration Agency. We selected two algorithms: one based on a bidirectional reflectance distribution function (BRDF) model and one based on multi-regression models. The former determines kernel-driven BRDF model parameters from multiple sets of reflectance and estimates the land surface albedo from those parameters. The latter estimates the land surface albedo from a single set of reflectance with multi-regression models. The multi-regression models are derived for an arbitrary geometry from datasets of simulated albedo and multi-angular reflectance. In experiments using in situ multi-temporal data for barren land, deciduous broadleaf forests, and paddy fields, the albedos estimated by the BRDF-based and multi-regression-based algorithms achieve reasonable root-mean-square errors. However, the latter algorithm requires information about the land cover of the pixel of interest, and the variance of its estimated albedo is sensitive to the observation geometry. We therefore conclude that the BRDF-based algorithm is more robust and can be applied to SGLI operational albedo products for various applications, including climate-change research.


Author(s):  
J. Ramachandran ◽  
R. Lalitha ◽  
K. Sivasubramanian

Introduction: Land Surface Temperature (LST) is a significant climatic variable and defined as how hot the "surface" of the Earth would feel to the physical touch in a particular location. A spatial analysis of the land surface temperature with respect to different land use/cover changes is vital to evaluate the hydrological processes. Methods: The objective of this paper is to assess the spatial variation of land surface temperature derived from thermal bands of the Landsat 8 Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) by using split window algorithm. Place and Data: The study was conducted in Lalgudi block of Trichy District, Tamil Nadu, India. The block has diverse environment like forest area, barren land, river sand bed, water bodies, dry vegetation, cultivated areas (paddy, sugarcane, banana etc.) and settlements. Landsat 8 satellite images for four selected scenes (December 2014 & January 2015 and December 2017 & January 2018) were used to estimate the LST. Results: The spatial and temporal variation of Normalized Difference Vegetation Index (NDVI) and LST were estimated. The average NDVI values of cropped fields varied from 0.3 to 0.5 in all the scenes. The maximum value of LST ranging from 35 to 40°C was recorded in river sand bed. Subsequently, semi-urban settlements in the central part of Lalgudi block exhibited higher temperature ranging from 28 – 30°C. The LST of paddy crop and sugarcane was in the range of 23 to 25°C. The water bodies exhibited LST around 20°C. The coconut plantations, forest area and Prosopis juliflora showed LST value ranging from 24 – 29°C. This kind of block level monitoring studies helps in adopting suitable policies to overcome or minimize the problems triggered by increase in land surface temperature.


2021 ◽  
Vol 6 (3) ◽  
pp. 320-328
Author(s):  
Suraj Prasad Bist ◽  
Rabindra Adhikari ◽  
Raju Raj Regmi ◽  
Rajan Subedi

The present study was conducted in the Mohana watershed of Far-western Nepal to assess land use land cover change. The study has used ArcGIS and three Landsat images - Landsat TM (1999), Landsat ETM+ (2009), and Landsat OLI (2019) – to analyze land use the land cover change of the watershed. The change matrix technique was used for change detection analysis. The study area was classified into five classes; forest, agriculture, built-up, water bodies, and barren lands. The study has found that among the five identified classes forest and build-up increased positively from 45.40 % to 51.51 % - forest cover and 11.26 % to 19. 85 % - build-up respectively. Similarly, agricultural land and water bodies initially increased but after 2009 both land cover areas decreased to 23.79 % and 0.73 % from 31.38 % and 0.97 % in 2009 respectively. Barren land decreased from 15.37% to 4.12% over the last 20 years. This study might support land-use planners and policymakers to adopt the best suitable land use management option for the Mohana watershed.


Author(s):  
Mitiku Badasa ◽  
Lachisa Busha

Analysis of the correlation between indices (Normalized Difference Vegetation Index, Normalized Difference Barren Index and Modified Normalized Difference Water Index) and land surface temperature is used to natural resources and environmental studies. This research aimed to analysis of Land Surface Temperature due to dynamics of Different Indices (NDVI, NDBaI and MNDWI) Using Remote Sensing Data in three selected districts (Gida Kiremu, Limu and Amuru), western Ethiopia. From thermal and multispectral bands of landsat imageries (Landsat TM of 1990, landsat ETM+ of 2003 and landsat OLI/TIRS of 2020) Land surface temperature and NDVI, NDBaI and MNDWI were calculated. Correlation analysis was used to indicate relationships between LST with NDVI, NDBaI and MNDWI. The study found that Land Surface Temperature was increased by 50C from 1990 to 2020. Vegetation areas (NDVI) and Water bodies (MNDWI) have strong negative relationship with Land Surface Temperature (R2= 0.99, 0.95) whereas Barren land (NDBaI) has positive relationship with Land Surface Temperature (R2= 0.96). Finally, we recommend the decision makers and environmental analyst to emphasis the importance of vegetation cover and water body to minimize the potential impacts of land surface temperature.


Sign in / Sign up

Export Citation Format

Share Document