scholarly journals Identification and Evolutionary Characteristic Analysis of STARD Gene Family, and Overexpression VvSTARD5 Responses to Salt Stress in Tomato

Author(s):  
Honghong He ◽  
Shixiong lu ◽  
Huiming Gou ◽  
Xuejing Cao ◽  
Ping Wang ◽  
...  

Abstract This study aimed to have a full understanding of the steroidogenic acute regulatory gene family member and evolutionary relationship in grape. 23 VvSTARD gene members were identified and divided into five groups in different species. Analyses of the gene codon preference, selective pressure, and tandem duplication of the VvSTARD, AtSTARD, and OsSTARD genes indicated that synteny relationship occurred in grapes, Arabidopsis thaliana, and rice genomes. The 8 lipid transporter proteins were found in the tertiary structure of the STARD gene family in grape. Expression profiles of the three species microarrays showed that the expression levels of the STARD genes in different organs and the response to abiotic stress in the same subgroup had similar characteristics. In addition, analysis of the VvSTARD genes expression levels was detected in response to different hormones and abiotic stresses by quantitative real-time polymerase chain reaction (qRT-PCR), and the results were the same as those predicted by the cis-elements and the expression profiles. Meanwhile, VvSTARD5 gene was screened in high concentration NaCl treatment by qRT-PCR. Furthermore, the VvSTARD5 was located at the nucleus by subcellular location. Through the function analysis of salt tolerance in transgenic tomato, overexpression VvSTARD5 obviously improved tolerance to salt stress. Taken together, our findings Preliminary identify the functions of VvSTARD gene family and vertify STARD5 that be likely involved in regulating salt tolerance, which may have potential application molecular breeding in grape.

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaojin Lei ◽  
Bing Tan ◽  
Zhongyuan Liu ◽  
Jing Wu ◽  
Jiaxin Lv ◽  
...  

The CONSTANS-LIKE (COL) transcription factor has been reported to play important roles in regulating plant flowering and the response to abiotic stress. To clone and screen COL genes with excellent salt tolerance from the woody halophyte Tamarix hispida, 8 ThCOL genes were identified in this study. The expression patterns of these genes under different abiotic stresses (high salt, osmotic, and heavy metal) and abscisic acid (ABA) treatment were detected using quantitative real-time PCR (qRT-PCR). The expression levels of 8 ThCOL genes changed significantly after exposure to one or more stresses, indicating that these genes were all stress-responsive genes and may be involved in the stress resistance response of T. hispida. In particular, the expression level of ThCOL2 changed significantly at most time points in the roots and leaves of T. hispida under salt stress and after ABA treatments, which may play an important role in the response process of salt stress through a mechanism dependent on the ABA pathway. The recombinant vectors pROKII–ThCOL2 and pFGC5941–ThCOL2 were constructed for the transient transformation of T. hispida, and the transient infection of T. hispida with the pROKII empty vector was used as the control to further verify whether the ThCOL2 gene was involved in the regulation of the salt tolerance response of T. hispida. Overexpression of the ThCOL2 gene in plants under 150 mM NaCl stress increased the ability of transgenic T. hispida cells to remove reactive oxygen species (ROS) by regulating the activity of protective enzymes and promoting a decrease in the accumulation of O2– and H2O2, thereby reducing cell damage or cell death and enhancing salt tolerance. The ThCOL2 gene may be a candidate gene associated with excellent salt tolerance. Furthermore, the expression levels of some genes related to the ABA pathway were analyzed using qRT-PCR. The results showed that the expressions of ThNCED1 and ThNCED4 were significantly higher, and the expressions of ThNCED3, ThZEP, and ThAAO3 were not significantly altered in OE compared with CON under normal conditions. But after 24 h of salt stress, the expressions of all five studied genes all were lower than the normal condition. In the future, the downstream genes directly regulated by the ThCOL2 transcription factor will be searched and identified to analyze the salt tolerance regulatory network of ThCOL2.


2022 ◽  
Vol 12 ◽  
Author(s):  
Xiaokang Fu ◽  
Yonglin Yang ◽  
Meng Kang ◽  
Hengling Wei ◽  
Boying Lian ◽  
...  

The caleosin (CLO) protein family displays calcium-binding properties and plays an important role in the abiotic stress response. Here, a total of 107 CLO genes were identified in 15 plant species, while no CLO genes were detected in two green algal species. Evolutionary analysis revealed that the CLO gene family may have evolved mainly in terrestrial plants and that biological functional differentiation between species and functional expansion within species have occurred. Of these, 56 CLO genes were identified in four cotton species. Collinearity analysis showed that CLO gene family expansion mainly occurred through segmental duplication and whole-genome duplication in cotton. Sequence alignment and phylogenetic analysis showed that the CLO proteins of the four cotton species were mainly divided into two types: H-caleosins (class I) and L-caleosins (class II). Cis-acting element analysis and quantitative RT–PCR (qRT–PCR) suggested that GhCLOs might be regulated by abscisic acid (ABA) and methyl jasmonate (MeJA). Moreover, transcriptome data and qRT–PCR results revealed that GhCLO genes responded to salt and drought stresses. Under salt stress, gene-silenced plants (TRV: GhCLO06) showed obvious yellowing and wilting, higher malondialdehyde (MDA) content accumulation, and significantly lower activities of superoxide dismutase (SOD) and peroxidase (POD), indicating that GhCLO06 plays a positive regulatory role in cotton salt tolerance. In gene-silenced plants (TRV: GhCLO06), ABA-related genes (GhABF2, GhABI5, and GhNAC4) were significantly upregulated after salt stress, suggesting that the regulation of salt tolerance may be related to the ABA signaling pathway. This research provides an important reference for further understanding and analyzing the molecular regulatory mechanism of CLOs for salt tolerance.


2021 ◽  
Author(s):  
Honghong He ◽  
Huiming Gou ◽  
Qi Zhou ◽  
Xuejing Cao ◽  
Ping Wang ◽  
...  

Abstract This study aimed to enhance the understanding of the steroidogenic acute regulatory protein-related lipid transfer (START) domain in Vitis vinifera. A total of 23 members of the VvSTARD gene family were found, which could be divided into five groups. The analyses of the gene codon preference, selective pressure, and tandem replication events of the VvSTARD, AtSTARD, and OsSTARD genomes indicated that tandem replication events occured in grapes, Arabidopsis, and rice genomes. Eight lipid transporter proteins were found in the tertiary structure of the STARD gene family in grapes. The analysis of the expression profiles of the three species microarrays showed that the expression sites of the STARD gene and the response to abiotic stress in the same subgroup had similar characteristics. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the expression of the STARD gene family in grape leaves in response to different hormones and abiotic stresses, and the obtained results were the same as those predicted by the cis-elements and the expression profiles. Furthermore, 35S:STARD5:EGFP was successfully constructed to verify the subcellular prediction results, and the results showed that STARD5 was located in the nucleus. Through the identification of salt tolerance of transgenic tomato, STARD5 was found to regulate the salt stress of plants. Collectively, these data indicated that the VvSTARD gene family plays an important role in response to salt stress.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1312
Author(s):  
Jia Liu ◽  
Weicong Qi ◽  
Haiying Lu ◽  
Hongbo Shao ◽  
Dayong Zhang

Salt tolerance is an important trait in soybean cultivation and breeding. Plant responses to salt stress include physiological and biochemical changes that affect the movement of water across the plasma membrane. Plasma membrane intrinsic proteins (PIPs) localize to the plasma membrane and regulate the water and solutes flow. In this study, quantitative real-time PCR and yeast two-hybridization were engaged to analyze the early gene expression profiles and interactions of a set of soybean PIPs (GmPIPs) in response to salt stress. A total of 20 GmPIPs-encoding genes had varied expression profiles after salt stress. Among them, 13 genes exhibited a downregulated expression pattern, including GmPIP1;6, the constitutive overexpression of which could improve soybean salt tolerance, and its close homologs GmPIP1;7 and 1;5. Three genes showed upregulated patterns, including the GmPIP1;6 close homolog GmPIP1;4, when four genes with earlier increased and then decreased expression patterns. GmPIP1;5 and GmPIP1;6 could both physically interact strongly with GmPIP2;2, GmPIP2;4, GmPIP2;6, GmPIP2;8, GmPIP2;9, GmPIP2;11, and GmPIP2;13. Definite interactions between GmPIP1;6 and GmPIP1;7 were detected and GmPIP2;9 performed homo-interaction. The interactions of GmPIP1;5 with GmPIP2;11 and 2;13, GmPIP1;6 with GmPIP2;9, 2;11 and GmPIP2;13, and GmPIP2;9 with itself were strengthened upon salt stress rather than osmotic stress. Taken together, we inferred that GmPIP1 type and GmPIP2 type could associate with each other to synergistically function in the plant cell; a salt-stress environment could promote part of their interactions. This result provided new clues to further understand the soybean PIP–isoform interactions, which lead to potentially functional homo- and heterotetramers for salt tolerance.


Genes ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 680 ◽  
Author(s):  
He ◽  
Liang ◽  
Lu ◽  
Wang ◽  
Liu ◽  
...  

Gibberellin (GAs) plays the important role in the regulation of grape developmental and growth processes. The bioinformatics analysis confirmed the differential expression of GA2, GA3, and GA20 gibberellin oxidase genes (VvGA2oxs, VvGA3oxs, and VvGA20oxs) in the grape genome, and laid a theoretical basis for exploring its role in grape. Based on the Arabidopsis GA2oxs, GA3oxs, and GA20oxs genes already reported, the VvGA2oxs, VvGA3oxs, and VvGA20oxs genes in the grape genome were identified using the BLAST software in the grape genome database. Bioinformatics analysis was performed using software such as DNAMAN v.5.0, Clustalx, MapGene2Chrom, MEME, GSDS v.2.0, ExPASy, DNAsp v.5.0, and MEGA v.7.0. Chip expression profiles were generated using grape Affymetrix GeneChip 16K and Grape eFP Browser gene chip data in PLEXdb. The expression of VvGA2oxs, VvGA3oxs, and VvGA20oxs gene families in stress was examined by qRT-PCR (Quantitative real-time-PCR). There are 24 GAoxs genes identified with the grape genome that can be classified into seven subgroups based on a phylogenetic tree, gene structures, and conserved Motifs in our research. The gene family has higher codon preference, while selectivity is negative selection of codon bias and selective stress was analyzed. The expression profiles indicated that the most of VvGAox genes were highly expressed under different time lengths of ABA (Abscisic Acid) treatment, NaCl, PEG and 5 °C. Tissue expression analysis showed that the expression levels of VvGA2oxs and VvGA20oxs in different tissues at different developmental stages of grapes were relatively higher than that of VvGA3oxs. Last but not least, qRT-PCR (Real-time fluorescent quantitative PCR) was used to determine the relative expression of the GAoxs gene family under the treatment of GA3 (gibberellin 3) and uniconazole, which can find that some VvGA2oxs was upregulated under GA3 treatment. Simultaneously, some VvGA3oxs and VvGA20oxs were upregulated under uniconazole treatment. In a nutshell, the GA2ox gene mainly functions to inactivate biologically active GAs, while GA20ox mainly degrades C20 gibberellins, and GA3ox is mainly composed of biologically active GAs. The comprehensive analysis of the three classes of VvGAoxs would provide a basis for understanding the evolution and function of the VvGAox gene family in a grape plant.


2021 ◽  
Author(s):  
Xiaofeng Nian ◽  
Li Li ◽  
Xusheng Ma ◽  
Xiurong Li ◽  
Wenhui Li ◽  
...  

Abstract Background: Echinococcus multilocularis (Em) infection and the growth and proliferation of its metacestode within the internal organs of hosts are related to complex host–parasite interactions at the molecular level. Previous studies reported the profiles of long non-coding RNAs (lncRNAs) and mRNAs in Echinococcus granulosus-infected mice or cells, suggesting the potential role of lncRNAs in regulating host-parasite interplay. However, the profiles of lncRNAs and mRNAs of mice in response to Em are poorly understood. Methods: Numerous differentially expressed lncRNAs (DELs) and mRNAs (DEMs) in the mouse liver at eight time points after Em infection were identified by microarray. Functional Annotation of dysregulated DEMs was conducted by gene ontology (GO) classification and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The potential function of DELs was predicted by constructing lncRNA-mRNA co-expression network and Transcription factor (TF)-lncRNA-mRNA Ternary Network. Additionally, qRT-PCR and western blotting were used to validate the upregulated DEMs at 30 days post-infection (dpi), which were enriched in Toll-like and RIG-I-like receptor signaling pathways. Cytokines and chemokines involved in these two pathways were determined by ELISA.Results: Thirty-one DEMs and 68 DELs were found continuously dysregulated. These DEMs were notably enriched in the “antigen processing and presentation,” “Th1 and Th2 cell differentiation” and “Th17 cell differentiation” pathways. The potential function prediction of DELs revealed that most DELs might influence the differentiation of Th17 cell and TGF-β/Smad pathway through trans regulating the SMAD3, STAT1, and early growth response (EGR) genes. Additionally, the validated results by qRT-PCR and western blotting showed that the mRNA expression levels of these genes increased while the corresponding protein expression levels were unaltered except c-Jun amino-terminal kinase (JNK). Regardless, phospho-nuclear factor Kappa B (p-NF-κB) downstream of these two pathways was induced at 15 and 30 dpi, which led to the elevated levels of IL-1 beta and IL-6 in the serum. Conclusion: Our data provide novel clues in understanding the roles of lncRNAs in the host–Em interplay and the influence of Em infection on host innate immunity.


Epigenomics ◽  
2021 ◽  
Author(s):  
Congxia Bai ◽  
Tingting Liu ◽  
Yingying Sun ◽  
Hao Li ◽  
Ning Xiao ◽  
...  

Aim: To investigate the expression profiles of circRNAs after intracerebral hemorrhage (ICH). Materials & methods: RNA sequencing and qRT-PCR were used to investigate and validate circRNA expression levels. Bioinformatics analysis was performed to explore potential functions of the circRNAs. Results: Expression levels of 15 circRNAs were consistently altered in patients with ICH compared with their expression levels in hypertension. Three circRNAs, hsa_circ_0001240, hsa_circ_0001947 and hsa_circ_0001386, individually or combined, were confirmed as promising biomarkers for predicting and diagnosing ICH. The circRNAs were involved mainly in lysine degradation and the immune system. Conclusion: This is the first study to report expression profiles of circRNAs after ICH and to propose that three circRNAs are potential biomarkers for ICH.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yuzhu Huo ◽  
Wangdan Xiong ◽  
Kunlong Su ◽  
Yu Li ◽  
Yawen Yang ◽  
...  

The plant-specific transcription factor TCPs play multiple roles in plant growth, development, and stress responses. However, a genome-wide analysis of TCP proteins and their roles in salt stress has not been declared in switchgrass (Panicum virgatum L.). In this study, 42 PvTCP genes (PvTCPs) were identified from the switchgrass genome and 38 members can be anchored to its chromosomes unevenly. Nine PvTCPs were predicted to be microRNA319 (miR319) targets. Furthermore, PvTCPs can be divided into three clades according to the phylogeny and conserved domains. Members in the same clade have the similar gene structure and motif localization. Although all PvTCPs were expressed in tested tissues, their expression profiles were different under normal condition. The specific expression may indicate their different roles in plant growth and development. In addition, approximately 20 cis-acting elements were detected in the promoters of PvTCPs, and 40% were related to stress response. Moreover, the expression profiles of PvTCPs under salt stress were also analyzed and 29 PvTCPs were regulated after NaCl treatment. Taken together, the PvTCP gene family was analyzed at a genome-wide level and their possible functions in salt stress, which lay the basis for further functional analysis of PvTCPs in switchgrass.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Chung-Min Kang ◽  
Seong-Oh Kim ◽  
Mijeong Jeon ◽  
Hyung-Jun Choi ◽  
Han-Sung Jung ◽  
...  

The aim of this study was to compare the differential gene expression and stemness in the human gingiva and dental follicles (DFs) according to their biological characteristics. Gingiva (n=9) and DFs (n=9) were collected from 18 children. Comparative gene expression profiles were collected using cDNA microarray. The expression of development, chemotaxis, mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSs) related genes was assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Histological analysis was performed using hematoxylin-eosin and immunohistochemical staining. Gingiva had greater expression of genes related to keratinization, ectodermal development, and chemotaxis whereas DFs exhibited higher expression levels of genes related to tooth and embryo development. qRT-PCR analysis showed that the expression levels of iPSc factors includingSOX2,KLF4, andC-MYCwere58.5±26.3,12.4±3.5, and12.2±1.9times higher in gingiva andVCAM1(CD146) andALCAM(CD166) were33.5±6.9and4.3±0.8times higher in DFs. Genes related to MSCs markers includingCD13,CD34,CD73,CD90, andCD105were expressed at higher levels in DFs. The results of qRT-PCR and IHC staining supported the microarray analysis results. Interestingly, this study demonstrated transcription factors of iPS cells were expressed at higher levels in the gingiva. Given the minimal surgical discomfort and simple accessibility, gingiva is a good candidate stem cell source in regenerative dentistry.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 10528-10528
Author(s):  
Ranit Aharonov ◽  
Gila Lithwick Yanai ◽  
Hila Benjamin ◽  
Mats Olot Sanden ◽  
Marluce Bibbo ◽  
...  

10528 Background: Lung cancer is the leading cause of cancer deaths in the US. Treatment options are determined by tumor subtyping, for which there is lack of standardized, objective, and highly accurate techniques. In 20%-30% of cases significant limitations of tumor quantity and quality prevent full classification of the tumor using traditional diagnostic methods. Using microRNA microarray data generated from over a hundred formalin-fixed, paraffin-embedded (FFPE) primary lung cancer samples, we have identified microRNA expression profiles that differ significantly for the main lung cancer types. Based on these findings, we have developed and validated a microRNA-based qRT-PCR assay that differentiates primary lung cancers into four types: squamous cell carcinoma, non-squamous non-small cell lung cancer, carcinoid and small cell carcinoma. Methods: Over 700 primary tumor samples from different histological types of lung cancer were collected. Samples included FFPE blocks from resection or biopsies and cell blocks from cytology specimens including fine needle aspiration, bronchial brushing and bronchial washing. High-quality RNA was extracted from the samples using proprietary protocols. Expression levels of potential microRNA biomarkers were profiled using microarrays followed by a sensitive and specific qRT-PCR platform. An assay for lung tumors classification using 8 microRNAs on qRT-PCR was developed based on data from 261 samples. This assay was validated on an independent blinded set of 451 cytological and pathological samples. Results: Using the expression levels of 8 microRNAs measured in qRT-PCR, accurate classification of the primary lung tumors into the four main cancer types is obtained. The microRNA-based assay reached an accuracy of 94%. Moreover, cytological samples composed over 50% of the validation set and reached an accuracy of 95%. Conclusions: We present here a new microRNA-based assay for the classification of the four main types of lung cancer based only on the expression of 8 microRNAs. This assay displays very high levels of accuracy for both pathological and cytological samples. The assay comprises a standardized, well-tested and objective tool which can assist physicians in the diagnosis of lung cancer.


Sign in / Sign up

Export Citation Format

Share Document