scholarly journals Assessing the Potential Impact of Immunity Waning on the Dynamics of COVID-19: An Endemic Model of COVID-19

Author(s):  
MUSA RABIU ◽  
Sarafa A. Iyaniwura

Abstract We developed an endemic model of COVID-19 to assess the impact of vaccination and immunity waning on the dynamics of the disease. Our model exhibits the phenomenon of backward bifurcation and bi-stability, where a stable disease-free equilibrium co-exists with a stable endemic equilibrium. The epidemiological implication of this is that the control reproduction number being less than unity is no longer sufficient to guarantee disease eradication. We showed that this phenomenon could be eliminated by either increasing the vaccine efficacy or by reducing the disease transmission rate (adhering to non-pharmaceutical interventions). Furthermore, we numerically investigated the impacts of vaccination and waning of both vaccine-induced immunity and post-recovery immunity on the disease dynamics. Our simulation results show that the waning of vaccine-induced immunity has more effect on the disease dynamics relative to post-recovery immunity waning, and suggests that more emphasis should be on reducing the waning of vaccine-induced immunity to eradicate COVID-19.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fatima Khadadah ◽  
Abdullah A. Al-Shammari ◽  
Ahmad Alhashemi ◽  
Dari Alhuwail ◽  
Bader Al-Saif ◽  
...  

Abstract Background Aggressive non-pharmaceutical interventions (NPIs) may reduce transmission of SARS-CoV-2. The extent to which these interventions are successful in stopping the spread have not been characterized in countries with distinct socioeconomic groups. We compared the effects of a partial lockdown on disease transmission among Kuwaitis (P1) and non-Kuwaitis (P2) living in Kuwait. Methods We fit a modified metapopulation SEIR transmission model to reported cases stratified by two groups to estimate the impact of a partial lockdown on the effective reproduction number ($$ {\mathcal{R}}_e $$ R e ). We estimated the basic reproduction number ($$ {\mathcal{R}}_0 $$ R 0 ) for the transmission in each group and simulated the potential trajectories of an outbreak from the first recorded case of community transmission until 12 days after the partial lockdown. We estimated $$ {\mathcal{R}}_e $$ R e values of both groups before and after the partial curfew, simulated the effect of these values on the epidemic curves and explored a range of cross-transmission scenarios. Results We estimate $$ {\mathcal{R}}_e $$ R e at 1·08 (95% CI: 1·00–1·26) for P1 and 2·36 (2·03–2·71) for P2. On March 22nd, $$ {\mathcal{R}}_e $$ R e for P1 and P2 are estimated at 1·19 (1·04–1·34) and 1·75 (1·26–2·11) respectively. After the partial curfew had taken effect, $$ {\mathcal{R}}_e $$ R e for P1 dropped modestly to 1·05 (0·82–1·26) but almost doubled for P2 to 2·89 (2·30–3·70). Our simulated epidemic trajectories show that the partial curfew measure greatly reduced and delayed the height of the peak in P1, yet significantly elevated and hastened the peak in P2. Modest cross-transmission between P1 and P2 greatly elevated the height of the peak in P1 and brought it forward in time closer to the peak of P2. Conclusion Our results indicate and quantify how the same lockdown intervention can accentuate disease transmission in some subpopulations while potentially controlling it in others. Any such control may further become compromised in the presence of cross-transmission between subpopulations. Future interventions and policies need to be sensitive to socioeconomic and health disparities.


Author(s):  
Fatima Khadadah ◽  
Abdullah A. Al-Shammari ◽  
Ahmad Alhashemi ◽  
Dari Alhuwail ◽  
Bader Al-Saif ◽  
...  

Background: Aggressive non-pharmaceutical interventions (NPIs) may reduce transmission of SARS-CoV2. The extent to which these interventions are successful in stopping the spread have not been characterized in countries with distinct socioeconomic groups. We compared the effects of a partial lockdown on disease transmission among Kuwaitis (P1) and non-Kuwaitis (P2) living in Kuwait. Methods: We fit a metapopulation Susceptible-Exposed-Infectious-Recovered (SEIR) model to reported cases stratified by two groups to estimate the impact of a lockdown on the effective reproduction number (Re). We estimated the basic reproduction number (R0) for the transmission in each group and simulated the potential trajectories of an outbreak from the first recorded case of community transmission until 12 days after the lockdown. We estimated R­e values of both groups before and after the lockdown, simulated the effect of these values on epidemic curves and explored a range of cross-transmission scenarios. Results: We estimate R0 at 1·06 (95% CI: 1·05-1·28) for P1 and 1·83 (1·58-2·33) for P2. On March 22nd, Re for P1 and P2 are estimated at 1·13 (1·07-1·17) and 1·38 (1·25-1·63) respectively. After the curfew had taken effect, Re for P1 dropped modestly to 1·04 (1·02-1·06) but almost doubled for P2 to 2·47 (1·98-3·45). Our simulated epidemic trajectories show that the partial curfew measure modestly reduced and delayed the height of the peak in P1, yet significantly elevated and hastened the peak in P2. Modest cross-transmission from P2 to P1 elevated the height of the peak in P1 and brought it forward in time closer to the peak of P2.    Conclusion: Our results demonstrate that a lockdown can reduce SARS-CoV2 transmission in one subpopulation but accelerate it in another. At the population level, the consequences of lockdowns may vary across the socioeconomic spectrum. Any public health intervention needs to be sensitive to disparities within populations.


2020 ◽  
Author(s):  
Kenneth Uzoma Egeonu ◽  
Simeon Chioma Inyama ◽  
Andrew Omame

A mathematical model for two strains of Malaria and Cholera with optimal control is studied and analyzed to assess the impact of treatment controls in reducing the burden of the diseases in a population, in the presence of malaria drug resistance. The model is shown to exhibit the dynamical property of backward bifurcation when the associated reproduction number is less than unity. The global asymptotic stability of the disease-free equilibrium of the model is proven not to exist. The necessary conditions for the existence of optimal control and the optimality system for the model is established using the Pontryagin's Maximum Principle. Numerical simulations of the optimal control model reveal that malaria drug resistance can greatly influence the co-infection cases averted, even in the presence of treatment controls for co-infected individuals.


2020 ◽  
Author(s):  
Jie Zhu ◽  
Blanca Gallego

Abstract To date, many studies have argued the potential impact of public health interventions on flattening the epidemic curve of SARS-CoV-2. Most of them have focused on simulating the impact of interventions in a region of interest by manipulating contact patterns and key transmission parameters to reflect different scenarios. Our study looks into the evolution of the daily effective reproduction number during the epidemic via a stochastic transmission model. We found this measure (although model-dependent) provides an early signal of the efficacy of containment measures. This epidemiological parameter when updated in real-time can also provide better predictions of future outbreaks. Our results found a substantial variation in the effect of public health interventions on the dynamic of SARS-CoV-2 transmission over time and across countries, that could not be explained solely by the timing and number of the adopted interventions. This suggests that further knowledge about the idiosyncrasy of their implementation and effectiveness is required. Although sustained containment measures have successfully lowered growth in disease transmission, more than half of the 101 studied countries failed to maintain the effective reproduction number close to or below 1. This resulted in continued growth in reported cases. Finally, we were able to predict with reasonable accuracy which countries would experience outbreaks in the next 30 days.


2020 ◽  
Vol 13 (07) ◽  
pp. 2050062
Author(s):  
Yibeltal Adane Terefe ◽  
Semu Mitiku Kassa

A deterministic model for the transmission dynamics of melioidosis disease in human population is designed and analyzed. The model is shown to exhibit the phenomenon of backward bifurcation, where a stable disease-free equilibrium co-exists with a stable endemic equilibrium when the basic reproduction number [Formula: see text] is less than one. It is further shown that the backward bifurcation dynamics is caused by the reinfection of individuals who recovered from the disease and relapse. The existence of backward bifurcation implies that bringing down [Formula: see text] to less than unity is not enough for disease eradication. In the absence of backward bifurcation, the global asymptotic stability of the disease-free equilibrium is shown whenever [Formula: see text]. For [Formula: see text], the existence of at least one locally asymptotically stable endemic equilibrium is shown. Sensitivity analysis of the model, using the parameters relevant to the transmission dynamics of the melioidosis disease, is discussed. Numerical experiments are presented to support the theoretical analysis of the model. In the numerical experimentations, it has been observed that screening and treating individuals in the exposed class has a significant impact on the disease dynamics.


2012 ◽  
Vol 05 (03) ◽  
pp. 1260011 ◽  
Author(s):  
WEI-WEI SHI ◽  
YUAN-SHUN TAN

We develop an influenza pandemic model with quarantine and treatment, and analyze the dynamics of the model. Analytical results of the model show that, if basic reproduction number [Formula: see text], the disease-free equilibrium (DFE) is globally asymptotically stable, if [Formula: see text], the disease is uniformly persistent. The model is then extended to assess the impact of three anti-influenza control measures, precaution, quarantine and treatment, by re-formulating the model as an optimal control problem. We focus primarily on controlling disease with a possible minimal the systemic cost. Pontryagin's maximum principle is used to characterize the optimal levels of the three controls. Numerical simulations of the optimality system, using a set of reasonable parameter values, indicate that the precaution measure is more effective in reducing disease transmission than the other two control measures. The precaution measure should be emphasized.


2018 ◽  
Vol 11 (02) ◽  
pp. 1850017 ◽  
Author(s):  
Peter Mpasho Mwamtobe ◽  
Simphiwe Mpumelelo Simelane ◽  
Shirley Abelman ◽  
Jean Michel Tchuenche

A model which incorporates some of the basic epidemiological features of the co-dynamics of malaria and tuberculosis (TB) is formulated and the effectiveness of current intervention strategies of these two diseases is analyzed. The malaria-only and TB-only models are considered first. Global stability disease-free steady states of the two sub-models does not hold due to the co-existence of stable disease-free with stable endemic equilibria, a phenomenon known as backward bifurcation. The dynamics of the dual malaria–TB model with intervention strategies are also analyzed. Numerical simulations of the malaria–TB model are carried out to determine whether the two diseases can co-exist. Lastly, sensitivity analysis on key parameters that drive the disease dynamics is performed in order to identify their relative importance to disease transmission.


Author(s):  
Aleksandra Tomczak ◽  
Dominika Warmjak ◽  
Aneta Wiśniewska

Introduction: Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. In 2019 the WHO reported approximately 10 million TB cases and 1.4 million deaths worldwide. TB still remains one of the leading causes of death in humans. Brazil is one of 30 countries with the highest TB burden with 96,000 new cases and 6,700 deaths reported in 2019. From 2015 the TB incidence is increasing by 2%–3% annually. It means that TB control programs need to be improved. Aim: Our aim is to show the impact of active case finding of TB cases among a high-risk subpopulation on decline of the incidence in the general population. Material and methods: We use a SIS-type compartmental mathematical model to describe the disease dynamics. We consider the population as a heterogeneous population which differ in disease transmission risk. Using best-fit techniques we compare the actual data with the model. For the fitted parameters we calculate the basic reproduction number and estimate the TB trends for the next few years applying several preventative protocols. Results and discussion: Using numerical simulations we examine the impact of ACF on the disease dynamics. We show that active screening among high risk subpopulations can help to reduce TB spread. We show how the reproduction number and estimated incidence decline depend on the detection rate. Conclusions: Active screening is one of the most effective ways for reducing the spread of disease. However, due to financial constraints, it can only be used to a limited extent. Properly applied detection can limit the spread of the disease while minimizing costs.


Author(s):  
Tanvi ◽  
Mohammad Sajid ◽  
Rajiv Aggarwal ◽  
Ashutosh Rajput

In this paper, we have proposed a nonlinear mathematical model of different classes of individuals for coronavirus (COVID-19). The model incorporates the effect of transmission and treatment on the occurrence of new infections. For the model, the basic reproduction number [Formula: see text] has been computed. Corresponding to the threshold quantity [Formula: see text], the stability of endemic and disease-free equilibrium (DFE) points are determined. For [Formula: see text], if the endemic equilibrium point exists, then it is locally asymptotically stable, whereas the DFE point is globally asymptotically stable for [Formula: see text] which implies the eradication of the disease. The effects of various parameters on the spread of COVID-19 are discussed in the segment of sensitivity analysis. The model is numerically simulated to understand the effect of reproduction number on the transmission dynamics of the disease COVID-19. From the numerical simulations, it is concluded that if the reproduction number for the coronavirus disease is reduced below unity by decreasing the transmission rate and detecting more number of infectives, then the epidemic can be eradicated from the population.


2019 ◽  
Vol 39 ◽  
pp. 45-62
Author(s):  
Amit Kumar Saha ◽  
Ashrafi Meher Niger ◽  
Chandra Nath Podder

The distribution of HIV and malaria overlap globally. So there is always a chance of co-infection. In this paper the impact of medication on HIV-Malaria co-infection has been analyzed and we have developed a mathematical model using the idea of the models of Mukandavire, et al. [13] and Barley, et al. [3] where treatment classes are included. The disease-free equilibrium (DFE) of the HIV-only model is globally-asymptotically stable (GAS) when the reproduction number is less than one. But it is shown that in the malaria-only model, there is a coexistence of stable disease-free equilibrium and stable endemic equilibrium, for a certain interval of the reproduction number less than unity. This indicates the existence of backward bifurcation. Numerical simulations of the full model are performed to determine the impact of treatment strategies. It is shown that malaria-only treatment strategy reduces more new cases of the mixed infection than the HIV-only treatment strategy. Moreover, mixed treatment strategy reduces the least number of new cases compared to single treatment strategies. GANIT J. Bangladesh Math. Soc.Vol. 39 (2019) 45-62


Sign in / Sign up

Export Citation Format

Share Document