scholarly journals Model-Based Cloud Service Deployment Optimisation Method For Minimisation of Application Service Operational Cost

Author(s):  
Ivana Stupar ◽  
Darko Huljenić

Abstract Many of the currently existing solutions for cloud cost optimisation are aimed at cloud infrastructure providers, and they often deal only with specific types of application services, leaving the providers of cloud applications without the suitable cost optimization solution, especially concerning the wide range of different application types. In this paper, we present an approach that aims to provide an optimisation solution for the providers of applications hosted in the cloud environments, applicable at the early phase of a cloud application lifecycle and for a wide range of application services. The focus of this research is development of the method for identifying optimised service deployment option in available cloud environments based on the model of the service and its context, with the aim of minimising the operational cost of the cloud service, while fulfilling the requirements defined by the service level agreement. A cloud application context metamodel is proposed that includes parameters related to both the application service and the cloud infrastructure relevant for the cost and quality of service. By using the proposed optimisation method, the knowledge is gained about the effects that the cloud application context parameters have on the service cost and quality of service, which is then used to determine the optimised service deployment option. The service models are validated using cloud application services deployed in laboratory conditions, and the optimisation method is validated using the simulations based on proposed cloud application context metamodel. The experimental results based on two cloud application services demonstrate the ability of the proposed approach to provide relevant information about the impact of cloud application context parameters on service cost and quality of service, and use this information in the optimisation aimed at reducing service operational cost while preserving the acceptable service quality level. The results indicate the applicability and relevance of the proposed approach for cloud applications in the early service lifecycle phase since application providers can gain useful insights regarding service deployment decision without acquiring extensive datasets for the analysis.

2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Ivana Stupar ◽  
Darko Huljenić

With the increased usage of cloud computing in production environments, both for scientific workflows and industrial applications, the focus of application providers shifts towards service cost optimisation. One of the ways to achieve minimised service execution cost is to optimise the placement of the service in the resource pool of the cloud data centres. An increasing number of research approaches is focusing on using machine learning algorithms to deal with dynamic cloud workloads by allocating resources to services in an adaptive way. Many of such solutions are intended for cloud infrastructure providers and deal only with specific types of cloud services. In this paper, we present a model-based approach aimed at the providers of applications hosted in the cloud, which is applicable in early phases of the service lifecycle and can be used for any cloud application service. Using several machine learning methods, we create models to predict cloud service cost and response times of two cloud applications. We also explore how to extract knowledge about the effect that the cloud application context has on both service cost and quality of service so that the gained knowledge can be used in the service placement decision process. The experimental results demonstrate the ability of providing relevant information about the impact of cloud application context parameters on service cost and quality of service. The results also indicate the relevance of our approach for applications in preproduction phase since application providers can gain useful insights regarding service placement decision without acquiring extensive training datasets.


The principle highlight of a cloud application is its versatility. Significant IaaS cloud administrations suppliers (CSP) utilize auto scaling on the dimension of virtual machines (VM). Other virtualization arrangements (for example compartments, units) can likewise scale. An application scales in light of progress in watched measurements, for example in CPU use. Every so often, cloud applications display the powerlessness to meet the Quality of Service (QoS) necessities during the scaling brought about by the reactivity of auto scaling arrangements. This paper gives the after effects of the auto scaling execution assessment for two-layered virtualization (VMs and units) directed in the open billows of AWS, Microsoft and Google utilizing the methodology and the Auto scaling Performance Estimation Tool created by the creators


Author(s):  
Olexander Melnikov ◽  
◽  
Konstantin Petrov ◽  
Igor Kobzev ◽  
Viktor Kosenko ◽  
...  

The article considers the development and implementation of cloud services in the work of government agencies. The classification of the choice of cloud service providers is offered, which can serve as a basis for decision making. The basics of cloud computing technology are analyzed. The COVID-19 pandemic has identified the benefits of cloud services in remote work Government agencies at all levels need to move to cloud infrastructure. Analyze the prospects of cloud computing in Ukraine as the basis of e-governance in development. This is necessary for the rapid provision of quality services, flexible, large-scale and economical technological base. The transfer of electronic information interaction in the cloud makes it possible to attract a wide range of users with relatively low material costs. Automation of processes and their transfer to the cloud environment make it possible to speed up the process of providing services, as well as provide citizens with minimal time to obtain certain information. The article also lists the risks that exist in the transition to cloud services and the shortcomings that may arise in the process of using them.


IoT ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 49-75
Author(s):  
Antonio Oliveira-Jr ◽  
Kleber Cardoso ◽  
Filipe Sousa ◽  
Waldir Moreira

Industry 4.0 and digital farming rely on modern communication and computation technologies such as the Internet of Things (IoT) to provide smart manufacturing and farming systems. Having in mind a scenario with a high number of heterogeneous connected devices, with varying technologies and characteristics, the deployment of Industry 4.0 and digital farming solutions faces innovative challenges in different domains (e.g., communications, security, quality of service). Concepts such as network slicing and Software-Defined Networking (SDN) provide the means for faster, simpler, scalable and flexible solutions in order to serve a wide range of applications with different Quality-of-Service (QoS) requirements. Hence, this paper proposes a lightweight slice-based QoS manager for non-3GPP IoT focusing on different use cases and their varying requirements and characteristics. Our focus in this work is on non-3GPP IoT unlicensed wireless technologies and not specifically the end-to-end network slice perspective as described in 5G standards. We implemented and evaluated different QoS models in distinct scenarios in a real experimental environment in order to illustrate the potential of the proposed solution.


Despite the numerous benefits of cloud computing, concerns around security, trust and privacy are holding back the cloud adoption. Lack of visibility and tangible measurement of the security posture of any cloud hosted application is a disadvantage to cloud service customers. Decision to migrate workloads on the Cloud requires thoughtful analysis about security implications and ability to measure the security controls after hosting. In this paper, we propose a framework to quantitatively measure different aspects of information security for Cloud applications. This framework has a system through which we can define applications specific controls, gather information on control implementation, calculate the security levels for applications and present them to stakeholders through dashboards. Framework also includes detailed method to quantify the security of a Cloud application considering different aspects of security, control criticalities, stakeholder responsibilities and cloud service models. System and method provide visibility to Cloud customer on the security posture of their cloud hosted applications.


2021 ◽  
Vol 10 (6) ◽  
pp. 3202-3210
Author(s):  
Sameer A. S. Lafta ◽  
Mohaned Mahdi Abdulkareem ◽  
Raed Khalid Ibrahim ◽  
Marwah M. Kareem ◽  
Adnan Hussein Ali

The universal mobile telecommunications system (UMTS) has distinct benefits in that it supports a wide range of quality of service (QoS) criteria that users require in order to fulfill their requirements. The transmission of video and audio in real-time applications places a high demand on the cellular network, therefore QoS is a major problem in these applications. The ability to provide QoS in the UMTS backbone network necessitates an active QoS mechanism in order to maintain the necessary level of convenience on UMTS networks. For UMTS networks, investigation models for end-to-end QoS, total transmitted and received data, packet loss, and throughput providing techniques are run and assessed and the simulation results are examined. According to the results, appropriate QoS adaption allows for specific voice and video transmission. Finally, by analyzing existing QoS parameters, the QoS performance of 4G/UMTS networks may be improved.


Author(s):  
Akashdeep Bhardwaj ◽  
Sam Goundar

This article describes how cloud computing has become a significant IT infrastructure in business, government, education, research, and service industry domains. Security of cloud-based applications, especially for those applications with constant inbound and outbound user traffic is important. It becomes of the utmost importance to secure the data flowing between the cloud application and user systems against cyber criminals who launch Denial of Service (DoS) attacks. Existing research related to cloud security focuses on securing the flow of information on servers or between networks but there is a lack of research to mitigate Distributed Denial of Service attacks on cloud environments as presented by Buyya et al. and Fachkha, et al. In this article, the authors propose an algorithm and a Hybrid Cloud-based Secure Architecture to mitigate DDoS attacks. By proposing a three-tier cloud infrastructure with a two-tier defense system for separate Network and Application layers, the authors show that DDoS attacks can be detected and blocked before reaching the infrastructure hosting the Cloud applications.


Sign in / Sign up

Export Citation Format

Share Document