Neuregulin-1 Regulates the Conversion of M1/M2 Microglia Phenotype via ErbB4-dependent Inhibition of the NF-κB Pathway

Author(s):  
Yuqi Ma ◽  
Peixia Fan ◽  
Rui Zhao ◽  
Yinghua Zhang ◽  
Xianwei Wang ◽  
...  

Abstract BackgroundThe inflammatory response caused by microglia in the central nervous system plays an important role in Alzheimer's disease. Neuregulin-1 (NRG1) is a member of the neuregulin family and has been demonstrated to have anti-inflammatory properties. The relationship between NRG1, microglia phenotype and neuroinflammation remains unclear.Materials and MethodsBV2 cells were used to examine the mechanism of NRG1 in regulating microglia polarization. Neuronal apoptosis, inflammatory factors TNF-α and iNOS, microglia polarization, ErbB4 and NF-κB p65 expression were assessed.ResultsWe found that exogenous NRG1 treatment or overexpression improved microglial activity and reduced the secretion of the inflammatory factors TNF-α and iNOS in vitro. The expression of Bax in SH-SY5Y neuron cells incubated with medium collected from the NRG1 treatment group decreased. Additionally, our study showed that NRG1 treatment reduced the levels of the M1 microglia markers CD120 and iNOS and increased the levels of the M2 microglia markers CD206 and Arg-1. Furthermore, we observed that NRG1 treatment attenuated Aβ-induced NF-κB activation and promoted the expression of p-ErbB4 and that knockdown of ErbB4 abrogated the effects of NRG1 on NF-κB, Bax levels and M2 microglial polarization. ConclusionNRG1 inhibits the release of inflammatory factors in microglia and regulates the switching of the M1/M2 microglia phenotype, most likely via ErbB4-dependent inhibition of the NF-κB pathway.

2020 ◽  
Vol 26 (6) ◽  
pp. 505-513
Author(s):  
Yun-Qiu Li ◽  
Yu Zhong ◽  
Xu-Ping Xiao ◽  
Dan-Dan Li ◽  
Zheng Zhou ◽  
...  

Allergic rhinitis (AR) is a nasal mucosal inflammatory disease mediated by environmental allergens. At present, the relationship between the IL-33/ST2 axis, ERK1/2 pathway and AR progression needs further exploration. In our study, an AR model was constructed in vitro by treating HNEpC cells with Der p1. qRT-PCR was applied to assess the mRNA levels of IL-33, ST2, TNF-α, IL-6, and IL-8. Western blotting was used to measure the protein levels of IL-33, ST2, and the downstream proteins p-ERK1/2, ERK1/2, p-RSK, and RSK. IL-6, IL-8, IL-33, and TNF-α protein levels in cell supernatants were evaluated by ELISA. Flow cytometry was performed to check cell apoptosis of HNEpC in the presence or absence of Der p1. Our results indicate that the relative levels of IL-33, ST2, TNF-α, IL-6, and IL-8 were increased significantly in the AR model group. The above effects were notably reversed after transfection with shIL-33 or shST2. IL-33 stimulation further resulted in the increase in both ST2 and inflammation-associated cytokines, and these effects were restored after shST2 treatment. Also, the levels of inflammatory factors induced by IL-33 stimulation or ST2 overexpression were reversed after applying an ERK1/2 pathway blocker. In conclusion, IL-33/ST2 mediated inflammation of nasal mucosal epithelial cells by inducing the ERK1/2 pathway.


2021 ◽  
Author(s):  
Qiuping Zhou ◽  
Lanfen Lin ◽  
Haiyan Li ◽  
Shuqi Jiang ◽  
Huifang Wang ◽  
...  

Abstract Microglia activation and associated inflammation are implicated in the periventricular white matter damage (PWMD) in septic postnatal rats. This study investigated whether melatonin would mitigate inflammation and alleviate the axonal hypomyelination in the corpus callosum in septic postnatal rats. We further explored if this might be through modulating microglial polarization from M1 phenotype to M2 through JAK2/STAT3/telomerase pathway. We reported here that melatonin, indeed, not only can it reduce the neurobehavioral disturbances in LPS injected rats, but it can also dampen microglia mediated inflammation. Thus, in LPS + melatonin group, expression of proinflammatory mediators in M1 phenotype microglia was downregulated. As opposed to this, M2 microglia were increased which was accompanied by upregulated expression of anti-inflammatory mediators along with TERT or MT1. In parallel to this was decreased NG2 expression but increased expression of myelin and neurofilament proteins. That melatonin can improve hypomyelination was confirmed by electron microscopy. In vitro in primary microglia stimulated by LPS, melatonin decreased the expression of proinflammatory mediators significantly; but it increased expression of anti-inflammatory mediators. Additionally, the expression levels of p-JAK2 and p-STAT3 were significantly elevated in microglia after melatonin treatment. Remarkably, the melatonin effects on LPS treated microglia was blocked by melatonin receptor, JAK2, STAT3 and telomerase reverse transcriptase inhibitors, respectively. Taken together, it is concluded that melatonin can attenuate PWMD through shifting M1 microglia towards M2 via MT1/JAK2/STAT3/telomerase pathway. The results suggest a new therapeutic strategy whereby melatonin may be adopted to convert microglial polarization that would ultimately contribute to attenuation of PWMD.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Hao Huang ◽  
Yanqin Fan ◽  
Zhao Gao ◽  
Wei Wang ◽  
Ning Shao ◽  
...  

Abstract Background Studies have indicated that changed expression of hypoxia-inducible factor-1α (HIF-1α) in epithelial cells from the kidney could affect the renal function in chronic kidney disease (CKD). As Angiotensin II (Ang II) is a critical active effector in the renin-angiotensin system (RAS) and was proved to be closely related to the inflammatory injury. Meanwhile, researchers found that Ang II could alter the expression of HIF-1α in the kidney. However, whether HIF-1α is involved in mediating Ang II-induced inflammatory injury in podocytes is not clear. Methods Ang II perfusion animal model were established to assess the potential role of HIF-1α in renal injury in vivo. Ang II stimulated podocytes to observe the corresponding between HIF-1α and inflammatory factors in vitro. Results The expression of inflammatory cytokines such as MCP-1 and TNF-α was increased in the glomeruli from rats treated with Ang II infusion compared with control rats. Increased HIF-1α expression in the glomeruli was also observed in Ang II-infused rats. In vitro, Ang II upregulated the expression of HIF-1α in podocytes. Furthermore, knockdown of HIF-1α by siRNA decreased the expression of MCP-1 and TNF-α. Moreover, HIF-1α siRNA significantly diminished the Ang II-induced overexpression of HIF-1α. Conclusion Collectively, our results suggest that HIF-1α participates in the inflammatory response process caused by Ang II and that downregulation of HIF-1α may be able to partially protect or reverse inflammatory injury in podocytes.


Marine Drugs ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 222 ◽  
Author(s):  
Wenhui Jin ◽  
Longhe Yang ◽  
Zhiwei Yi ◽  
Hua Fang ◽  
Weizhu Chen ◽  
...  

Palmitoylethanolamide (PEA) is an endogenous lipid mediator with powerful anti-inflammatory and analgesic functions. PEA can be hydrolyzed by a lysosomal enzyme N-acylethanolamine acid amidase (NAAA), which is highly expressed in macrophages and other immune cells. The pharmacological inhibition of NAAA activity is a potential therapeutic strategy for inflammation-related diseases. Fucoxanthinol (FXOH) is a marine carotenoid from brown seaweeds with various beneficial effects. However, the anti-inflammatory effects and mechanism of action of FXOH in lipopolysaccharide (LPS)-stimulated macrophages remain unclear. This study aimed to explore the role of FXOH in the NAAA–PEA pathway and the anti-inflammatory effects based on this mechanism. In vitro results showed that FXOH can directly bind to the active site of NAAA protein and specifically inhibit the activity of NAAA enzyme. In an LPS-induced inflammatory model in macrophages, FXOH pretreatment significantly reversed the LPS-induced downregulation of PEA levels. FXOH also substantially attenuated the mRNA expression of inflammatory factors, including inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), and markedly reduced the production of TNF-α, IL-6, IL-1β, and nitric oxide (NO). Moreover, the inhibitory effect of FXOH on NO induction was significantly abolished by the peroxisome proliferator-activated receptor α (PPAR-α) inhibitor GW6471. All these findings demonstrated that FXOH can prevent LPS-induced inflammation in macrophages, and its mechanisms may be associated with the regulation of the NAAA-PEA-PPAR-α pathway.


2020 ◽  
Vol 53 (1) ◽  
Author(s):  
Jintao Gao ◽  
Fangru Chen ◽  
Huanan Fang ◽  
Jing Mi ◽  
Qi Qi ◽  
...  

Abstract Background Psoriasis is a common chronic inflammatory skin disease. Keratinocytes hyperproliferation and excessive inflammatory response contribute to psoriasis pathogenesis. The agents able to attenuate keratinocytes hyperproliferation and excessive inflammatory response are considered to be potentially useful for psoriasis treatment. Daphnetin exhibits broad bioactivities including anti-proliferation and anti-inflammatory. This study aims to evaluate the anti-psoriatic potential of daphnetin in vitro and in vivo, and explore underlying mechanisms. Methods HaCaT keratinocytes was stimulated with the mixture of IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α (M5) to establish psoriatic keratinocyte model in vitro. Cell viability was measured using Cell Counting Kit-8 (CCK-8). Quantitative Real-Time PCR (qRT-PCR) was performed to measure the mRNA levels of hyperproliferative marker gene keratin 6 (KRT6), differentiation marker gene keratin 1 (KRT1) and inflammatory factors IL-1β, IL-6, IL-8, TNF-α, IL-23A and MCP-1. Western blotting was used to detect the protein levels of p65 and p-p65. Indirect immunofluorescence assay (IFA) was carried out to detect p65 nuclear translocation. Imiquimod (IMQ) was used to construct psoriasis-like mouse model. Psoriasis severity (erythema, scaling) was scored based on Psoriasis Area Severity Index (PASI). Hematoxylin and eosin (H&E) staining was performed to examine histological change in skin lesion. The expression of inflammatory factors including IL-6, TNF-α, IL-23A and IL-17A in skin lesion was measured by qRT-PCR. Results Daphnetin attenuated M5-induced hyperproliferation in HaCaT keratinocytes. M5 stimulation significantly upregulated mRNA levels of IL-1β, IL-6, IL-8, TNF-α, IL-23A and MCP-1. However, daphnetin treatment partially attenuated the upregulation of those inflammatory cytokines. Daphnetin was found to be able to inhibit p65 phosphorylation and nuclear translocation in HaCaT keratinocytes. In addition, daphnetin significantly ameliorate the severity of skin lesion (erythema, scaling and epidermal thickness, inflammatory cell infiltration) in IMQ-induced psoriasis-like mouse model. Daphnetin treatment attenuated IMQ-induced upregulation of inflammatory cytokines including IL-6, IL-23A and IL-17A in skin lesion of mice. Conclusions Daphnetin was able to attenuate proliferation and inflammatory response induced by M5 in HaCaT keratinocytes through suppression of NF-κB signaling pathway. Daphnetin could ameliorate the severity of skin lesion and improve inflammation status in IMQ-induced psoriasis-like mouse model. Daphnetin could be an attractive candidate for future development as an anti-psoriatic agent.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4094-4094
Author(s):  
Dorian Forte ◽  
Daria Sollazzo ◽  
Nicola Polverelli ◽  
Romano Marco ◽  
Lara Rossi ◽  
...  

Abstract Introduction. Myelofibrosis (MF), an acquired clonal disorder of the hematopoietic stem/progenitor cell (HSPC) with a dysregulation in JAK/STAT signalling (mutations in JAK2, MPL and Calreticulin (CALR) genes), is characterized by a state of chronic inflammation. It is argued that the up-regulated production of proinflammatory cytokines by both HSPCs and the surrounding stromal cells generates a microenvironment that selects for the malignant clone. Only recently, it has been hypothesized that the sustained inflammatory microenvironment of MF can alter crucial biological processes, leading to genomic instability and cancer progression. Here we tested the in vitro functional effects of pivotal players of the inflammatory microenvironment (the extracellular ATP nucleotide and selected cytokines, such as Interleukin (IL)-1β, Tumor Necrosis Factor (TNF)-α or the Tissue Inhibitor of Metalloproteinases-1 (TIMP-1)) on the HSPCs from MF patients. Methods: Circulating CD34+/CD34+ CD38- cells from MF patients (JAK2V617F (17 cases) and CALR (9 cases) mutations) or cord blood (CB; 8 samples) were phenotypically and functionally characterized after in vitro incubation with or without ATP (1000 μM), IL-1β (10 ng/mL), TNF-α (10 ng/mL) or TIMP-1 (100 ng/mL) (alone or in combination). Cells were then analyzed for survival/apoptosis (Annexin-V/Propidium Iodide staining), phenotype (evaluation of CD63 (TIMP-1 receptor), CXCR4 and CD38 expression), cell cycle and clonogenic capacity. Migration was assessed first towards a CXCL12 gradient in the presence or absence of the pro-inflammatory factors. In parallel experiments, CD34+ cells from MF patients were co-cultured with normal mesenchymal stromal cells (MSCs) in the presence or absence of the pro-inflammatory cytokines and then evaluated for their ability to migrate towards a CXCL12 gradient. Plasma TIMP-1, TNF-α, IL-1β and CXCL12 were measured by ELISA assay. Results: The plasma levels of TIMP-1, TNF-α, IL-1β, CXCL12 and the number of circulating CD34+, CD34+ CD38-, CD34+ CD63+, CD34+ CD184+ cells were increased in MF patients. According to mutational status, the CD34+ CD63+ cells were higher in the CALR+ patients. The survival of MF CD34+ cells was strongly stimulated by in vitro incubation with TNF-α or IL-1β as compared with the CB-derived CD34+ cells or untreated cells. By multiple cytokine combinations, IL-1β/TIMP-1, IL-1β /ATP or IL-1β /TNF-α treatments significantly promote the survival of MF CD34+ cells as compared with the normal counterparts or the untreated cells. Various combinations with IL-1β were also effective in stimulating survival of CD34+CD38- cells. IL-1β/TIMP-1 and IL-1β/TNF-α/TIMP-1, but not factors alone, significantly increased the CFU-C growth of MF patients as compared with the CB-derived counterparts and the untreated cells. Moreover, comparing CALR+ vs JAK2V617F+ patients, the colony formation of JAK2V617F+ patients was mainly promoted by the IL-1β/TNF-α treatment. Along with clonogenic capacity stimulation, exposure of CD34+ cells from MF patients to IL-1β/TNF-α/TIMP-1 significantly increases the S-phase cells, suggesting that these pro-inflammatory factors stimulated cell-cycle progression in dormant CD34+ MF cells. Migration of CD34+ cells from MF was significantly increased in CXCL12 treated cells. In addition, exposure of MF CD34+ cells to IL-1β/TNF-α, IL-1β/TIMP-1 or IL-1β/TNF-α/TIMP-1 significantly promotes cell migration in comparison with the CB-derived counterparts or SDF-1 alone. MF migrated cells in the presence of IL-1β/TNF-α significantly upregulate CD63 expression. Intriguingly, colony formation of MF migrated CD34+ cells in the presence of IL-1β/TNF-α or IL-1β/TNF-α/TIMP-1 was potently increased. Finally, co-culture systems with normal MSCs in the presence of pro-inflammatory factors revealed that MF CD34+ cells display increased migration ability toward CXCL12 gradient. Conclusions: Altogether our findings suggest that in MF the inflammatory niche plays a key role in the maintenance of the malignant clone. Thus, the interplay between the pro-inflammatory cytokines promote and select the HSPCs with higher proliferative activity, clonogenic potential and migration capability. Targeting these microenvironmental interactions may be a clinically relevant approach. D.F. and D.S. equally contributed Disclosures Martinelli: Pfizer: Consultancy; Ariad: Consultancy; Novartis: Consultancy, Speakers Bureau; MSD: Consultancy; AMGEN: Consultancy; BMS: Consultancy, Speakers Bureau; ROCHE: Consultancy.


2001 ◽  
Vol 69 (2) ◽  
pp. 765-772 ◽  
Author(s):  
Yvonne R. Freund ◽  
Naunihal T. Zaveri ◽  
Harold S. Javitz

ABSTRACT Toxoplasmic encephalitis (TE) is a life-threatening disease of immunocompromised individuals and has increased in prevalence as a consequence of AIDS. TE has been modeled in inbred mice, with CBA/Ca mice being susceptible and BALB/c mice resistant to the development of TE. To better understand the innate mechanisms in the brain that play a role in resistance to TE, nitric oxide (NO)-dependent and NO-independent mechanisms were examined in microglia from BALB/c and CBA/Ca mice and correlated with the ability of these cells to inhibit Toxoplasma gondii replication. These parameters were measured 48 h after stimulation with lipopolysaccharide (LPS) gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), or combinations of these inducers in T. gondii-infected microglia isolated from newborn mice. CBA/Ca microglia consistently produced less NO than did BALB/c microglia after stimulation with LPS or with IFN-γ plus TNF-α, and they inhibitedT. gondii replication significantly less than did BALB/c microglia. Cells of both strains treated with IFN-γ alone significantly inhibited uracil incorporation by T. gondii, and N G-monomethyl-l-arginine (NMMA) treatment did not reverse this effect. In cells treated with IFN-γ in combination with other inducers, NMMA treatment resulted in only partial recovery of T. gondii replication. This IFN-γ-dependent inhibition of replication was not due to generation of reactive oxygen species or to increased tryptophan degradation. These data suggest that NO production and an IFN-γ-dependent mechanism contribute to the inhibition of T. gondii replication after in vitro stimulation with IFN-γ plus TNF-α or with LPS. Differences in NO production but not in IFN-γ-dependent inhibition of T. gondii replication were observed between CBA/Ca and BALB/c microglia.


Author(s):  
Xiaoyao Peng ◽  
Zhixuan Luo ◽  
Shuang He ◽  
Luhua Zhang ◽  
Ying Li

As a complex multicellular structure of the vascular system at the central nervous system (CNS), the blood-brain barrier (BBB) separates the CNS from the system circulation and regulates the influx and efflux of substances to maintain the steady-state environment of the CNS. Lipopolysaccharide (LPS), the cell wall component of Gram-negative bacteria, can damage the barrier function of BBB and further promote the occurrence and development of sepsis-associated encephalopathy (SAE). Here, we conduct a literature review of the direct and indirect damage mechanisms of LPS to BBB and the relationship between these processes and SAE. We believe that after LPS destroys BBB, a large number of inflammatory factors and neurotoxins will enter and damage the brain tissue, which will activate brain immune cells to mediate inflammatory response and in turn further destroys BBB. This vicious circle will ultimately lead to the progression of SAE. Finally, we present a succinct overview of the treatment of SAE by restoring the BBB barrier function and summarize novel opportunities in controlling the progression of SAE by targeting the BBB.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Shaoyi Wang ◽  
Jianlu Wei ◽  
Jie Shi ◽  
Qiting He ◽  
Xiaocong Zhou ◽  
...  

Background. Inflammation plays an important role in intervertebral disc degeneration (IDD). The protein follistatin-like 1 (FSTL1) plays a proinflammatory role in a variety of inflammatory diseases. Objectives. The purpose of this study was to investigate whether IDD could be delayed by inhibiting FSTL-1 expression. Methods. We established a puncture-induced IDD model in wild-type and FSTL-1+/- mice and collected intervertebral discs (IVDs) from the mice. Safranin O staining was used to detect cartilage loss of IVD tissue, and HE staining was used to detect morphological changes of IVD tissue. We measured the expression of FSTL-1 and related inflammatory indicators in IVD tissues by immunohistochemical staining, real-time PCR, and Western blotting. Results. In the age-induced model of IDD, the level of FSTL-1 increased with the exacerbation of degeneration. In the puncture-induced IDD model, FSTL-1-knockdown mice showed a reduced degree of degeneration compared with that of wild-type mice. Further experiments showed that FSTL-1 knockdown also significantly reduced the level of related inflammatory factors in IVD. In vitro experiments showed that FSTL-1 knockdown significantly reduced TNF-α-induced inflammation. Specifically, the expression levels of the inflammatory factors COX-2, iNOS, MMP-13, and ADAMTS-5 were reduced. Knockdown of FSTL-1 attenuated inflammation by inhibiting the expression of P-Smad1/5/8, P-Erk1/2, and P-P65. Conclusion. Knockdown of FSTL-1 attenuated inflammation by inhibiting the TNF-α response and Smad pathway activity and ultimately delayed IDD.


Author(s):  
Masoomeh Yosefifard ◽  
Gholamhassan Vaezi ◽  
Ali Akbar Malekirad ◽  
Fardin Faraji ◽  
Vida Hojati

Multiple sclerosis (MS) is the most common neurological disease that happens at a young age. MS is an inflammatory disease; associated with the demyelination of the central nervous system. Therefore, some inflammatory factors are effective in the mechanism and progression of the disease. Melatonin, as a multi-effect substance including anti-inflammatory effects, can reduce symptoms of MS in patients with a change in their inflammatory factors level. In this study, 50 MS patients who were referred to the MS Society of Markazi Province were randomly selected. All patients were treated with routine MS treatment (interferon) and were divided into control (25 placebo recipients) and treatment (25 recipients of 3 mg melatonin per day for 24 weeks) groups. Anthropometric data of patients including height, weight, and age were determined. Blood samples were collected after fasting in order to determine serum levels of interleukin 1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). Then, samples were immediately centrifuged for serum separation and sera were transferred to a freezer at -80°C and serum levels of these factors were determined; using ELISA kit. The results of this study showed that there was no significant difference between the control and treatment groups in terms of serum levels of TNF-α. However, the level of IL-1β was significantly reduced in the treatment group compared to the control group, indicating that melatonin decreases this inflammatory substance. Our findings suggest a valuable strategy in the treatment of patients who suffer from MS


Sign in / Sign up

Export Citation Format

Share Document