scholarly journals Application of Calcium-rich Clay Mineral Under Nonwoven Fabric Mats and Sand Armor as Cap Layer for Interrupting N and P Release from River Sediments

Author(s):  
Seung-Hee Hong ◽  
Chang-Gu Lee ◽  
Seong-Jik Park

Abstract This work investigates the applicability of thermally treated calcium-rich clay minerals (CRCMs), such as sepiolite (SPL), attapulgite (ATT), and dolomite (DLM) to hinder the nitrogen (N) and phosphorus (P) release from river sediments. A non-woven fabric mat (NWFM) or a sand layer were also capped as armor layers, i.e., placed over CRCMs to investigate the capping impact on the N/P release. The capping efficiency was evaluated in a cylindrical reactor, consisting of CRCMs, armor layers, sediments, and sampled water. We monitored N/P concentrations, dissolved oxygen (DO), oxidation reduction potential, pH, and electric conductivity in overlying water over 70 days. The DO concentrations in the uncapped and capped conditions were preserved for 30 days and 70 days (until the end of experiment duration), respectively. ATT showed higher efficiency for NH4-N and T-N than the other two materials, and the capping efficiency of NH4-N was measured as 96.4%, 93.7%, and 61.6% when capped with 2 cm sand layer, 1 cm sand layer, and NWFM layer, respectively. DLM showed a superior rejection capability of PO4-P to ATT and SPL, reported as 97.2% when capped with 2 cm sand armor. The content of weakly adsorbed-P was lower in the uncapped condition than in the capping condition. It can be concluded that ATT and DLM can be used as capping agents to deactivate N and P, respectively, to reduce water contamination from sediments of the eutrophic river.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Seung-Hee Hong ◽  
Jae-In Lee ◽  
Chang-Gu Lee ◽  
Seong-Jik Park

Abstract We investigated the influence of temperature on the capping efficiency to interrupt the release of nutrients from lake sediments. A 3-cm layer of Zeolite (ZL) or activated carbon (AC) was placed on the contaminated sediments, and nonwoven fabric mats (NWFM) were placed on top of these capping materials. Laboratory incubation experiments were performed under three different temperatures, namely 4, 15, and 30 °C. Under the uncapped condition at 30 °C, dissolved oxygen (DO) was depleted after 30 days, while at 4 °C and 15 °C, DO was present until the end of this experiment. DO concentration in overlying water was more dependent on the temperature than capping condition. ZL/NWFM effectively blocked the release of N from the sediments, and the capping efficiencies of ZL/NWFM for NH4-N at 4, 15, and 30 °C were 98%, 96%, and 94%, respectively. For the interruption of P release, both ZL/NWFM and AC/NWFM were not effective at 4 and 15 °C. At 30 °C, however, AC/NWFM was effective, and its capping efficiencies at 30 °C for PO4-P and T-P were 74.0% and 79.9%, respectively. In summary, nutrient release from sediments was accelerated at higher temperatures, and the effect of capping was significant at high temperature.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Adnan Kadić ◽  
Anikó Várnai ◽  
Vincent G. H. Eijsink ◽  
Svein Jarle Horn ◽  
Gunnar Lidén

Abstract Background Biochemical conversion of lignocellulosic biomass to simple sugars at commercial scale is hampered by the high cost of saccharifying enzymes. Lytic polysaccharide monooxygenases (LPMOs) may hold the key to overcome economic barriers. Recent studies have shown that controlled activation of LPMOs by a continuous H2O2 supply can boost saccharification yields, while overdosing H2O2 may lead to enzyme inactivation and reduce overall sugar yields. While following LPMO action by ex situ analysis of LPMO products confirms enzyme inactivation, currently no preventive measures are available to intervene before complete inactivation. Results Here, we carried out enzymatic saccharification of the model cellulose Avicel with an LPMO-containing enzyme preparation (Cellic CTec3) and H2O2 feed at 1 L bioreactor scale and followed the oxidation–reduction potential and H2O2 concentration in situ with corresponding electrode probes. The rate of oxidation of the reductant as well as the estimation of the amount of H2O2 consumed by LPMOs indicate that, in addition to oxidative depolymerization of cellulose, LPMOs consume H2O2 in a futile non-catalytic cycle, and that inactivation of LPMOs happens gradually and starts long before the accumulation of LPMO-generated oxidative products comes to a halt. Conclusion Our results indicate that, in this model system, the collapse of the LPMO-catalyzed reaction may be predicted by the rate of oxidation of the reductant, the accumulation of H2O2 in the reactor or, indirectly, by a clear increase in the oxidation–reduction potential. Being able to monitor the state of the LPMO activity in situ may help maximizing the benefit of LPMO action during saccharification. Overcoming enzyme inactivation could allow improving overall saccharification yields beyond the state of the art while lowering LPMO and, potentially, cellulase loads, both of which would have beneficial consequences on process economics.


Author(s):  
Kamil Gill ◽  
Michal Kups ◽  
Patryk Harasny ◽  
Tomasz Machalowski ◽  
Marta Grabowska ◽  
...  

Since varicocele is so common in infertile men, this study intends to analyse the relationships between varicocele and conventional semen characteristics, sperm nuclear DNA dispersion and oxidation-reduction potential (ORP) in semen. Varicocele-positive and varicocele-negative infertile men (study groups) showed significantly lower standard sperm parameters and higher sperm DNA fragmentation (SDF) and ORP in semen than healthy volunteers and subjects with proven fertility (control groups). A lower proportion of low SDF levels (0–15% SDF) and higher incidence of high SDF levels (>30% SDF), as well as a higher prevalence of high ORP values (>1.37 mV/106 sperm/mL), were found in the study groups vs. the control groups. Moreover, infertile men had significantly lower odds ratios (ORs) for low SDF levels and significantly higher ORs for high SDF levels and high ORP. SDF and ORP were negatively correlated with sperm number, morphology, motility and vitality. Furthermore, a significant positive correlation was found between SDF and ORP. The obtained results suggest that disorders of spermatogenesis may occur in varicocele-related infertility. These abnormalities are manifested not only by reduced standard semen parameters but also by decreased sperm DNA integrity and simultaneously increased oxidative stress in semen.


2013 ◽  
Vol 813 ◽  
pp. 519-524
Author(s):  
Sang An Ha ◽  
Jei Pil Wang

A purpose of the present study is to derive optimum study factors for removal of heavy metals using combined alternating current electric/magnetic field and electric membranes for the area contaminated with heavy metals in soil or underground water. ORP (Oxidation Reduction Potential) analysis was conducted to determine an intensity of tendency for oxidation or reduction of the samples contaminated with heavy metals, and electrical membrane treatment was used with adjustment of concentrations and voltages of liquid electrode (Na2SO4) to derive a high removal rate. Removal constants were analyzed to be 0.0417, 0.119, 0.1594 when the voltages were 5V, 10V, 15V, respectively, and treatment efficiency was shown to increase as the liquid electrode concentration was increased. Keywords: heavy metals, electric/magnetic field, ORP, electrical membrane


1984 ◽  
Vol 224 (2) ◽  
pp. 577-580 ◽  
Author(s):  
M Madden ◽  
S M Lau ◽  
C Thorpe

Pig kidney general acyl-CoA dehydrogenase is markedly stabilized against loss of flavin and activity in 7.3 M-urea or at 60 degrees C upon reduction with sodium dithionite or octanoyl-CoA. Electron transferring flavoprotein is similarly stabilized, whereas egg white riboflavin-binding protein loses flavin more readily on reduction. These and other data support the anticipated correlation between the kinetic stability of the holoproteins and the oxidation-reduction potential of their bound flavins.


Sign in / Sign up

Export Citation Format

Share Document