scholarly journals Phosphate Transporter Regulator That Prevents Abnormal Hyperphosphatemia.

Author(s):  
Sumire Sasaki ◽  
Yuji Shiozaki ◽  
Ai Hanazaki ◽  
Megumi Koike ◽  
Kazuya Tanifuji ◽  
...  

Abstract Renal type II sodium-dependent inorganic phosphate (Pi) transporters NaPi2a and NaPi2c cooperate with other organs to strictly regulate the plasma Pi concentration. A high Pi load induces the phosphaturic hormones parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23), enhances urinary Pi excretion and prevents the onset of hyperphosphatemia. How FGF23 is induced from the bones by a high Pi load and the setpoint of the plasma Pi concentration, however, are unclear. Here, we investigated the role of transporter-associated protein (TRAP), found in gene co-expression networks in NaPi2a and NaPi2c function. TRAP is localized in the renal proximal tubules and interacts with NaPi2a. In TRAP-knockout (KO) mice, the serum FGF23 concentration was markedly increased but increased Pi excretion and hypophosphatemia were not observed. In addition, TRAP-KO mice exhibit reduced NaPi2a responsiveness to FGF23 and PTH administration. Furthermore, a dietary Pi load causes marked hyperphosphatemia and abnormal NaPi2a regulation in TRAP-KO mice. Thus, TRAP is thought to be associated with FGF23 induction in bones and the regulation of NaPi2a to prevent an increase in the plasma Pi concentration due to a high Pi load and kidney injury.

Bone ◽  
2011 ◽  
Vol 48 ◽  
pp. S148-S149
Author(s):  
S. Disthabanchong⁎ ◽  
S. Sirilak ◽  
V. Sumethkul ◽  
A. Ingsathit ◽  
S. Kantachuvesiri ◽  
...  

2013 ◽  
Vol 165 (5) ◽  
pp. e21 ◽  
Author(s):  
Supawat Ratanapo ◽  
Wonngarm Kittanamongkolchai ◽  
Narat Srivali ◽  
Saeed Ahmed ◽  
Wisit Cheungpasitporn ◽  
...  

2011 ◽  
Vol 301 (5) ◽  
pp. F1105-F1113 ◽  
Author(s):  
Akiko Ohi ◽  
Etsuyo Hanabusa ◽  
Otoya Ueda ◽  
Hiroko Segawa ◽  
Naoshi Horiba ◽  
...  

An inorganic phosphate (Pi)-restricted diet is important for patients with chronic kidney disease and patients on hemodialysis. Phosphate binders are essential for preventing hyperphosphatemia and ectopic calcification. The sodium-dependent Pi (Na/Pi) transport system is involved in intestinal Pi absorption and is regulated by several factors. The type II sodium-dependent Pi transporter Npt2b is expressed in the brush-border membrane in intestinal epithelial cells and transports Pi. In the present study, we analyzed the phenotype of Npt2b−/− and hetero+/− mice. Npt2b−/− mice died in utero soon after implantation, indicating that Npt2b is essential for early embryonic development. At 4 wk of age, Npt2b+/− mice showed hypophosphatemia and low urinary Pi excretion. Plasma fibroblast growth factor 23 levels were significantly decreased and 1,25(OH)2D3 levels were significantly increased in Npt2b+/− mice compared with Npt2b+/+ mice. Npt2b mRNA levels were reduced to 50% that in Npt2b+/+ mice. In contrast, renal Npt2a and Npt2c transporter protein levels were significantly increased in Npt2b+/− mice. At 20 wk of age, Npt2b+/− mice showed hypophosphaturia and reduced Na/Pi cotransport activity in the distal intestine. Npt2b+/+ mice with adenine-induced renal failure had hyperphosphatemia and high plasma creatinine levels. Npt2b+/− mice treated with adenine had significantly reduced plasma Pi levels compared with Npt2b+/+ mice. Intestinal Npt2b protein and Na+/Pi transport activity levels were significantly lower in Npt2b+/− mice than in the Npt2b+/+ mice. The findings of the present studies suggest that Npt2b is an important target for the prevention of hyperphosphatemia.


2016 ◽  
Vol 291 (36) ◽  
pp. 18632-18642 ◽  
Author(s):  
W. Bruce Sneddon ◽  
Giovanni W. Ruiz ◽  
Luciana I. Gallo ◽  
Kunhong Xiao ◽  
Qiangmin Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document