Microstructure and Hot Workability of Twin-roll Cast Dispersoid-strengthened Al- Mg-Si-Mn alloys
Abstract Dispersoid-strengthened Al-Mg-Si-Mn aluminum alloys were produced by twin-roll casting (TRC) and conventional mold casting (MC). An extra-low temperature homogenization was performed at temperature of 430 °C for 6 h, which was followed by uniaxial hot compression tests. The results showed that the as-cast TRC samples had a lower eutectic fraction with a smaller size and a higher solid solution concentration compared to the as-cast MC samples. During the extra-low temperature homogenization, a large number of α-Al(Fe, Mn)Si dispersoids precipitated, and the dispersoids in the TRC sample had a greater number density than those in the MC sample. Precipitation-free zone (PFZ) formed near the eutectic regions, TRC sample had a lower PFZ fraction than that of MC sample. The TRC samples yielded higher flow stresses of hot deformation than MC sample owing to the stronger dispersoid strengthening effect. Severe edge cracking occurred in the deformed MC samples due to the high fraction of coarse AlFeMnSi intermetallic particles, no edge crack formed in the TRC samples owing to its lower fraction and fine intermetallics which improved the hot workability of TRC sample.