scholarly journals Microstructure Transformation In Palm-Fiber Cell Wall And Its Influence On the Fiber's Mechanical Properties During Alkali Treatment

Author(s):  
Lingxiao Jing ◽  
Ying Jiang ◽  
Penghu Deng ◽  
Yuehan Wang ◽  
Yifa Ma ◽  
...  

Abstract In this study, we examined the microstructure transformation of palm fiber and the influence of this transformation on the fiber mechanical properties during alkali treatment. The fibers were treated with different concentrations of NaOH to study the change rules of the microstructure and the tensile properties. FT-IR microspectroscopic imaging and confocal laser scanning microscopy were adopted to observe microstructure transformation during alkali treatment. Research results showed that the hemicellulose and lignin in the fiber cell wall were removed by alkali treatment, leading to a rearrangement of cellulose chains. The tensile properties palm fibers were significantly improved because of crystallinity alterations in the cell walls after alkali treatment. This study might provide a basis for palm fiber’s high-value utilization in the field of materials.

BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5316-5327
Author(s):  
Bo Zhang ◽  
Yihan Guo ◽  
Xing'e Liu ◽  
Huiyu Chen ◽  
Shumin Yang ◽  
...  

The cell wall mechanical properties are an important indicator for evaluating the overall mechanical properties of natural bamboo fibers. Using the nanoindentation technique, the variation of the mechanical properties of the fiber cell wall of Bambusa pervariabilis culms with different ages and different positions (both radial and longitudinal) was studied. Moreover, x-ray diffraction (XRD) was employed to measure the microfibril angle (MFA), and the correlation between the MFA and the mechanical properties of the fiber cell wall. The results showed that there was a remarkable difference in the fiber cell wall mechanical properties at different ages and at different radial and longitudinal positions. However, at different ages and at different positions, the absolute value of variation of MFA was less than 1° and was very minor. Furthermore, there was no significant correlation between the fiber cell wall mechanics and MFA, indicating that the mechanical property of the fiber cell walls might be synergistically affected by many factors.


2020 ◽  
pp. 002199832096053 ◽  
Author(s):  
Noelle C Zanini ◽  
Rennan FS Barbosa ◽  
Alana G de Souza ◽  
Derval S Rosa ◽  
Daniella R Mulinari

Australian palm residues are generated by palm heart industry in large quantities and are considered an underused material with a composition rich in lignocellulosic structures. This residue is generally utilized as briquettes for energy or sheep feed; however, few works investigate this residue as composite fillers. This work aimed to revalue Australian palm residues (PR) by preparing polypropylene composites through melt mixing, using different fiber contents (0, 5, 10, 20, and 30 wt%), and evaluate the statistical influence of fibers (residues) alkali treatment (MPR) in composites mechanical properties. PR and MPR were evaluated by FTIR, XRD, SEM, TGA, and composites were assessed using thermal and mechanical analysis, in which ANOVA statistical analysis was applied. The residues addition increased the mechanical properties and their treatment enhanced the stiffness of the composites compared to pristine PP. However, ANOVA demonstrated that at low residues contents, surface treatment does not increase fiber-matrix interactions effectively, then tensile properties were statistically similar to PP. Considering tensile properties, 20% MPR showed statistically distinct properties, with significative enhancements; no filler contents dependence was verified. Flexural properties were more sensitive to residue loading, and composites with 30% PR and MPR presented superior mechanical performance. This difference is associated with a higher sensitivity of tensile stress towards fiber-matrix interactions, which was improved with fiber treatment. Also, the residues content and treatment influenced the composites' thermal stability, with better results for PP-MPR. Results indicate that palm residue is an excellent filler for improving composites' thermal and mechanical properties, with a greener character.


2013 ◽  
Vol 781-784 ◽  
pp. 2645-2649
Author(s):  
Yan Na Yin ◽  
Quan Xiao Liu ◽  
Yu Bin Lyu

Effects of mercerizing treatment on water-retention value of straw pulp fibers were discussed and the mercerizing treatment conditions were optimized. The best conditions of mercerizing treatment is NaOH concentration of 4mol/L, temperature of 40°C and processing time of 60min. SEM showed that the fiber cell wall swelling increase after mercerization.


2013 ◽  
Vol 467 ◽  
pp. 208-214 ◽  
Author(s):  
S. Kalyanasundaram ◽  
S. Jayabal

This paper aims at introducing and investigating the mechanical properties of new variety of natural fibers (Christmas palm fiber) used as reinforcement in polymer matrix composites. It was inferred that the poor inter laminar bonding between the Christmas palm fibers and polyester matrix restricted the mechanical properties of the composites. Hence surface modifications of Christmas palm fibers by means of alkali treatment were done in a view to enhance the bonding nature of the Christmas palm fiber with polyester matrix. The composite fabrication is carried out using compression moulding machine and the mechanical properties were tested as per ASTM standards. The effect of soaking time and solution concentration of Sodium hydroxide on the mechanical properties of Christmas palm fiber reinforced polyester composites were studied and fiber treatment conditions for better mechanical properties are identified. Scanning electron microscopy (SEM) investigations showed that surface modification improved the fiber/ matrix adhesion which in turn enhanced the mechanical properties of the Christmas palm fiber reinforced polyester composite.


Sign in / Sign up

Export Citation Format

Share Document