scholarly journals CircRNA_0263 and circRNA_1507 are Dysregulated in Atrial Fibrosis Rat Induced by Chronic Intermittent Hypoxia

Author(s):  
Xue Liang ◽  
Yanhong Liu ◽  
Yu Liu ◽  
Weiding Wang ◽  
Wenfeng Shangguan ◽  
...  

Abstract Aims: This study aimed to characterize circular RNA (circRNA) profiles associated with atrial fibrosis and identify critical circRNAs in a rat model of atrial fibrosis.Methods: Sprague Dawley rats were randomly divided into control and atrial fibrosis groups (n=15 in each group). For rats in the atrial fibrosis group, atrial fibrosis was induced by chronic intermittent hypoxia. Atrial tissues were isolated for circRNA sequencing. The dysregulated circRNAs in atrial fibrosis were identified by DESeq. Subsequently, the potential functions of circRNAs in atrial fibrosis were investigated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of the host genes. The interactions among circRNAs, microRNAs (miRNAs), and mRNAs were analyzed by constructing a competing endogenous RNA (ceRNA) network. Finally, the crucial circRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR).Results: Five upregulated and 11 downregulated circRNAs were identified in the atrial fibrosis group. These dysregulated circRNAs were primarily associated with “carbohydrate metabolism” and “cardiovascular diseases.” Two circRNAs (circRNA_0263 and circRNA_1507) were able to regulate target gene expression by interacting with corresponding miRNAs, including rno-miR-29b-5p, rno-miR-29b-3p, rno-miR-496-5p, rno-miR-136-5p, and novel123-mature. qRT-PCR successfully validated the differential expression of circRNA_0263 and circRNA_1507.Conclusion: A series of circRNAs were identified as dysregulated in an atrial fibrosis rat model. The dysregulation of two circRNAs (circRNA_0263 and circRNA_1507) might be crucial for atrial fibrosis development by competing with several miRNAs.

2006 ◽  
Vol 100 (4) ◽  
pp. 1117-1123 ◽  
Author(s):  
Shane A. Phillips ◽  
E. B. Olson ◽  
Julian H. Lombard ◽  
Barbara J. Morgan

Although arterial dilator reactivity is severely impaired during exposure of animals to chronic intermittent hypoxia (CIH), few studies have characterized vasoconstrictor responsiveness in resistance arteries of this model of sleep-disordered breathing. Sprague-Dawley rats were exposed to CIH (10% inspired O2 fraction for 1 min at 4-min intervals; 12 h/day) for 14 days. Control rats were housed under normoxic conditions. Diameters of isolated gracilis muscle resistance arteries (GA; 120–150 μm) were measured by television microscopy before and during exposure to norepinephrine (NE) and angiotensin II (ANG II) and at various intraluminal pressures between 20 and 140 mmHg in normal and Ca2+-free physiological salt solution. There was no difference in the ability of GA to constrict in response to ANG II ( P = 0.42; not significant; 10−10–10−7 M). However, resting tone, myogenic activation, and vasoconstrictor responses to NE ( P < 0.001; 10−9–10−6 M) were reduced in CIH vs. controls. Treatment of rats with the superoxide scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (tempol; 1 mM) in the drinking water restored myogenic responses and NE-induced constrictions of CIH rats, suggesting that elevated superoxide production during exposure to CIH attenuates vasoconstrictor responsiveness to NE and myogenic activation in skeletal muscle resistance arteries. CIH also leads to an increased stiffness and reduced vessel wall distensibility that were not correctable with oral tempol treatment.


Author(s):  
George E. Farmer ◽  
Joel T. Little ◽  
Alexandria B. Marciante ◽  
J. Thomas Cunningham

Chronic intermittent hypoxia (CIH) is associated with diurnal hypertension, increased sympathetic nerve activity (SNA), and increases in circulating angiotensin II (ANG II). In rats, CIH increases angiotensin type 1 (AT1a) receptor expression in the median preoptic nucleus (MnPO), and pharmacological blockade or viral knockdown of this receptor prevents CIH dependent increases in diurnal blood pressure. The current study investigates the role of AT1a receptor in modulating the activity of MnPO neurons following 7 days of CIH. Male Sprague-Dawley rats received MnPO injections of an adeno-associated virus with a shRNA against the AT1a receptor or a scrambled control. Rats were then exposed to CIH 8 h a day for 7 days. In vitro loose patch recordings of spontaneous action potential activity were made from labeled MnPO neurons in response to brief focal application of ANG II or the GABAA receptor agonist muscimol. Additionally, MnPO KCC2 protein expression was assessed using Western blot. CIH impaired the duration but not the magnitude of ANG II mediated excitation in the MnPO. Both CIH and AT1a knockdown also impaired GABAA mediated inhibition and CIH with AT1a knockdown produced GABAA mediated excitation. Recordings using the ratiometric Cl- indicator ClopHensorN showed CIH was associated with Cl- efflux in MnPO neurons that was associated with decreased KCC2 phosphorylation. The combination of CIH and AT1a knockdown attenuated reduced KCC2 phosphorylation seen with CIH alone. The current study shows that CIH, through the activity of AT1a receptors, can impair GABAA mediated inhibition in the MnPO contributing sustained hypertension.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Esteban A. Moya ◽  
Paulina Arias ◽  
Carlos Varela ◽  
María P. Oyarce ◽  
Rodrigo Del Rio ◽  
...  

Oxidative stress is involved in the development of carotid body (CB) chemosensory potentiation and systemic hypertension induced by chronic intermittent hypoxia (CIH), the main feature of obstructive sleep apnea. We tested whether peroxynitrite (ONOO−), a highly reactive nitrogen species, is involved in the enhanced CB oxygen chemosensitivity and the hypertension during CIH. Accordingly, we studied effects of Ebselen, an ONOO−scavenger, on 3-nitrotyrosine immunoreactivity (3-NT-ir) in the CB, the CB chemosensory discharge, and arterial blood pressure (BP) in rats exposed to CIH. Male Sprague-Dawley rats were exposed to CIH (5% O2, 12 times/h, 8 h/day) for 7 days. Ebselen (10 mg/kg/day) was administrated using osmotic minipumps and BP measured with radiotelemetry. Compared to the sham animals, CIH-treated rats showed increased 3-NT-ir within the CB, enhanced CB chemosensory responses to hypoxia, increased BP response to acute hypoxia, and hypertension. Rats treated with Ebselen and exposed to CIH displayed a significant reduction in 3-NT-ir levels (60.8 ± 14.9 versus 22.9 ± 4.2 a.u.), reduced CB chemosensory response to 5% O2(266.5 ± 13.4 versus 168.6 ± 16.8 Hz), and decreased mean BP (116.9 ± 13.2 versus 82.1 ± 5.1 mmHg). Our results suggest that CIH-induced CB chemosensory potentiation and hypertension are critically dependent on ONOO−formation.


2011 ◽  
Vol 301 (1) ◽  
pp. R131-R139 ◽  
Author(s):  
W. David Knight ◽  
Joel T. Little ◽  
Flavia R. Carreno ◽  
Glenn M. Toney ◽  
Steven W. Mifflin ◽  
...  

Chronic intermittent hypoxia (CIH) models repetitive bouts of arterial hypoxemia that occur in humans suffering from obstructive sleep apnea. CIH has been linked to persistent activation of arterial chemoreceptors and the renin-angiotensin system, which have been linked to chronic elevations of sympathetic nerve activity (SNA) and mean arterial pressure (MAP). Because Fos and FosB are transcription factors involved in activator protein (AP)-1 driven central nervous system neuronal adaptations, this study determined if CIH causes increased Fos or FosB staining in brain regions that regulate SNA and autonomic function. Male Sprague Dawley rats were instrumented with telemetry transmitters for continuous recording of MAP and heart rate (HR). Rats were exposed to continuous normoxia (CON) or to CIH for 8 h/day for 7 days. CIH increased MAP by 7–10 mmHg without persistently affecting HR. A separate group of rats was killed 1 day after 7 days of CIH for immunohistochemistry. CIH did not increase Fos staining in any brain region examined. Staining for FosB/ΔFosB was increased in the organum vasculosum of the lamina terminalis (CON: 9 ± 1; CIH: 34 ± 3 cells/section), subfornical organ (CON: 7 ± 2; CIH: 31 ± 3), median preoptic nucleus (CON 15 ± 1; CIH: 38 ± 3), nucleus of the solitary tract (CON: 9 ± 2; CIH: 28 ± 4), A5 (CON: 3 ± 1; CIH: 10 ± 1), and rostral ventrolateral medulla (CON: 5 ± 1; CIH: 17 ± 2). In the paraventricular nucleus, FosB/ΔFosB staining was located mainly in the dorsal and medial parvocellular subnuclei. CIH did not increase FosB/ΔFosB staining in caudal ventrolateral medulla or supraoptic nucleus. These data indicate that CIH induces an increase in FosB/ΔFosB in autonomic nuclei and suggest that AP-1 transcriptional regulation may contribute to stable adaptive changes that support chronically elevated SNA.


2003 ◽  
Vol 95 (4) ◽  
pp. 1499-1508 ◽  
Author(s):  
Michelle McGuire ◽  
Yi Zhang ◽  
David P. White ◽  
Liming Ling

This study examined the effect of chronic intermittent hypoxia (CIH: 5 min 11-12% O2/5 min air, 12 h/night, 7 nights) on ventilatory long-term facilitation (LTF) and determined the persistence period of this CIH effect in awake rats. LTF, elicited by 5 or 10 episodes of 5 min 12% O2, was measured four times in the same Sprague-Dawley rats by plethysmography, before and 8 h, 3 days, and 7 days after CIH treatment. Resting ventilation was unchanged after CIH. Five episodes of 12% O2 did not initially elicit LTF but elicited LTF (23.5 ± 1.4% above baseline) 8 h after CIH, which partially remained at 3 days (11.4 ± 2.2%, P < 0.05) and disappeared at 7 days. Ten episodes initially elicited LTF (17.7 ± 1.1%, 45-min duration) and elicited an enhanced LTF (29.1 ± 1.5%, 75 min) 8 h after CIH. These results demonstrated that CIH enhanced ventilatory LTF in conscious, freely behaving rats in two ways: 1) a previously ineffective protocol induced LTF; and 2) LTF magnitude was increased and LTF duration prolonged, and this CIH effect on LTF persisted for at least 3 days.


2011 ◽  
Vol 301 (5) ◽  
pp. L702-L711 ◽  
Author(s):  
Rodrigo Del Rio ◽  
Cristian Muñoz ◽  
Paulina Arias ◽  
Felipe A. Court ◽  
Esteban A. Moya ◽  
...  

Chronic intermittent hypoxia (CIH), a characteristic of sleep obstructive apnea, enhances carotid body (CB) chemosensory responses to hypoxia, but its consequences on CB vascular area and VEGF expression are unknown. Accordingly, we studied the effect of CIH on CB volume, glomus cell numbers, blood vessel diameter and number, and VEGF immunoreactivity (VEGF-ir) in male Sprague-Dawley rats exposed to 5% O2, 12 times/h for 8 h or sham condition for 21 days. We found that CIH did not modify the CB volume or the number of glomus cells but increased VEGF-ir and enlarged the vascular area by increasing the size of the blood vessels, whereas the number of the vessels was unchanged. Because oxidative stress plays an essential role in the CIH-induced carotid chemosensory potentiation, we tested whether antioxidant treatment with ascorbic acid may impede the vascular enlargement and the VEGF upregulation. Ascorbic acid, which prevents the CB chemosensory potentiation, failed to impede the vascular enlargement and the increased VEGF-ir. Thus present results suggest that the CB vascular enlargement induced by CIH is a direct effect of intermittent hypoxia and not secondary to the oxidative stress. Accordingly, the subsequent capillary changes may be secondary to the mechanisms involved in the neural chemosensory plasticity induced by intermittent hypoxia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kochakorn Lekvijittada ◽  
Jun Hosomichi ◽  
Hideyuki Maeda ◽  
Haixin Hong ◽  
Chidsanu Changsiripun ◽  
...  

AbstractIntermittent hypoxia (IH) has been associated with skeletal growth. However, the influence of IH on cartilage growth and metabolism is unknown. We compared the effects of IH on chondrocyte proliferation and maturation in the mandibular condyle fibrocartilage and tibial hyaline cartilage of 1-week-old male Sprague–Dawley rats. The rats were exposed to normoxic air (n = 9) or IH at 20 cycles/h (nadir, 4% O2; peak, 21% O2; 0% CO2) (n = 9) for 8 h each day. IH impeded body weight gain, but not tibial elongation. IH also increased cancellous bone mineral and volumetric bone mineral densities in the mandibular condylar head. The mandibular condylar became thinner, but the tibial cartilage did not. IH reduced maturative and increased hypertrophic chondrocytic layers of the middle and posterior mandibular cartilage. PCR showed that IH shifted proliferation and maturation in mandibular condyle fibrocartilage toward hypertrophic differentiation and ossification by downregulating TGF-β and SOX9, and upregulating collagen X. These effects were absent in the tibial growth plate hyaline cartilage. Our results showed that neonatal rats exposed to IH displayed underdeveloped mandibular ramus/condyles, while suppression of chondrogenesis marker expression was detected in the growth-restricted condylar cartilage.


Sign in / Sign up

Export Citation Format

Share Document