scholarly journals A Novel Decentralized Fixed-Time Tracking Control for Modular Robot Manipulators: Theoretical and Experimental Verification

Author(s):  
Zengpeng Lu ◽  
Yuanchun Li ◽  
Yan Li

Abstract This paper presents a novel decentralized fixed-time tracking control approach, which realizes the advantages of modular robot manipulators (MRMs) with fixed-time convergence, strong robustness, and high tracking performance. First, to estimate the total uncertainty of MRMs, the fixed-time observer based on the extended state is developed. Then, combined with the disturbance observer, a novel decentralized control method based on a fixed-time control strategy was devised to accomplish global fixed-time convergence of MRMs. And, stability analysis based on Lyapunov is utilized to obtain the fixed-time stability as well as convergence time of MRMs. Finally, numerical analysis and experiment respectively verify the excellent tracking ability of the presented decentralized fixed-time tracking control.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Huihui Pan ◽  
Guangming Zhang

This paper studies the fixed-time trajectory tracking control problem of robot manipulators in the presence of uncertain dynamics and external disturbances. First, a novel nonsingular fixed-time sliding mode surface is presented, which can ensure that the convergence time of the suggested surface is bounded regardless of the initial states. Subsequently, a novel fast nonsingular fixed-time sliding mode control (NFNFSMC) is developed so that the closed-loop system is fixed-time convergent to the equilibrium. By applying the proposed NFNFSMC method and the adaptive technique, a novel adaptive nonsingular fixed-time control scheme is proposed, which can guarantee fast fixed-time convergence of the tracking errors to small regions around the origin. With the proposed control method, the lumped disturbance is compensated by the adaptive technique, whose prior information about the upper bound is not needed. The fixed-time stability of the trajectory tracking control under the proposed controller is proved by the Lyapunov stability theory. Finally, corresponding simulations are given to illustrate the validity and superiority of the proposed control approach.


2020 ◽  
Vol 10 (9) ◽  
pp. 3010 ◽  
Author(s):  
Quang Vinh Doan ◽  
Anh Tuan Vo ◽  
Tien Dung Le ◽  
Hee-Jun Kang ◽  
Ngoc Hoai An Nguyen

This paper comes up with a novel Fast Terminal Sliding Mode Control (FTSMC) for robot manipulators. First, to enhance the response, fast convergence time, against uncertainties, and accuracy of the tracking position, the novel Fast Terminal Sliding Mode Manifold (FTSMM) is developed. Then, a Supper-Twisting Control Law (STCL) is applied to combat the unknown nonlinear functions in the control system. By using this technique, the exterior disturbances and uncertain dynamics are compensated more rapidly and more correctly with the smooth control torque. Finally, the proposed controller is launched from the proposed sliding mode manifold and the STCL to provide the desired performance. Consequently, the stabilization and robustness criteria are guaranteed in the designed system with high-performance and limited chattering. The proposed controller runs without a precise dynamic model, even in the presence of uncertain components. The numerical examples are simulated to evaluate the effectiveness of the proposed control method for trajectory tracking control of a 3-Degrees of Freedom (DOF) robotic manipulator.


Author(s):  
Bing Ma ◽  
Yuanchun Li

AbstractThis paper presents a novel compensator-critic structure-based event-triggered decentralized tracking control of modular robot manipulators (MRMs). On the basis of subsystem dynamics under joint torque feedback (JTF) technique, the proposed tracking error fusion function, which includes position error and velocity error, is utilized to construct performance index function. By analyzing the dynamic uncertainties, a local dynamic information-based robust controller is designed to engage the model uncertainty compensation. Based on adaptive dynamic programming (ADP) algorithm and the event-triggered mechanism, the decentralized tracking control is obtained by solving the event-triggered Hamilton–Jacobi–Bellman equation (HJBE) with the critic neural network (NN). The tracking error of the closed-loop manipulators system is proved to be ultimately uniformly bounded (UUB) using the Lyapunov stability theorem. Finally, experimental results illustrate the effectiveness of the developed control method.


Author(s):  
Meiying Ou ◽  
Haibin Sun ◽  
Zhenxing Zhang ◽  
Lingchun Li

This paper investigates the fixed-time trajectory tracking control for a group of nonholonomic mobile robots, where the desired trajectory is generated by a virtual leader, the leader’s information is available to only a subset of the followers, and the followers are assumed to have only local interaction. According to fixed-time control theory and adding a power integrator technique, distributed fixed-time tracking controllers are developed for each robot such that all states of each robot can reach the desired value in a fixed time. Moreover, the settling time is independent of the system initial conditions and only determined by the controller parameters. Simulation results illustrate and verify the effectiveness of the proposed schemes.


2020 ◽  
Vol 26 (17-18) ◽  
pp. 1425-1434 ◽  
Author(s):  
Sunhua Huang ◽  
Jie Wang

In this study, a fractional-order sliding mode controller is effectively proposed to stabilize a nonlinear power system in a fixed time. State trajectories of a nonlinear power system show nonlinear behaviors on the angle and frequency of the generator, phase angle, and magnitude of the load voltage, which would seriously affect the safe and stable operation of the power grid. Therefore, fractional calculus is applied to design a fractional-order sliding mode controller which can effectively suppress the inherent chattering phenomenon in sliding mode control to make the nonlinear power system converge to the equilibrium point in a fixed time based on the fixed-time stability theory. Compared with the finite-time control method, the convergence time of the proposed fixed-time fractional-order sliding mode controller is not dependent on the initial conditions and can be exactly evaluated, thus overcoming the shortcomings of the finite-time control method. Finally, superior performances of the fractional-order sliding mode controller are effectively verified by comparing with the existing finite-time control methods and integral order sliding mode control through numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document