scholarly journals High-Throughput Muscle Fiber Typing From RNA Sequencing Data

Author(s):  
Nikolay Oskolkov ◽  
Malgorzata Santel ◽  
Ola Ekström ◽  
Gray J. Camp ◽  
Eri Miyamoto-Mikami ◽  
...  

Abstract BACKGROUND: Skeletal muscle fiber type distribution has implications for human health, muscle function and performance. This knowledge has been gathered using labor-intensive and costly methodology that limited these studies. Here we present a method based on muscle tissue RNA sequencing data (totRNAseq) to estimate the distribution of skeletal muscle fiber types from frozen human samples, allowing for a larger number of individuals to be tested.METHODS: By using single-nuclei RNA sequencing (snRNAseq) data as a reference, cluster expression signatures were produced by averaging gene expression of cluster gene markers and then applying these to totRNAseq data and inferring muscle fiber nuclei type via linear matrix decomposition. This estimate was then compared with fiber type distribution measured by ATPase staining or myosin heavy chain protein isoform distribution of 62 muscle samples in two independent cohorts (n = 39 and 22).RESULTS: The correlation between the sequencing-based method and the other two were rATPas = 0.65 [0.46 – 0.84], [95% CI] and rmyosin = 0.80 [0.71 – 0.89], with p = 7.96 x 10-6 and 8.06 x 10-6 respectively. The deconvolution inference of fiber type composition was accurate even for very low totRNAseq sequencing depths, i.e., down to an average of ~5.000 paired-end reads.CONCLUSIONS: This new method (https://github.com/OlaHanssonLab/PredictFiberType) consequently allows for measurement of fiber type distribution of a larger number of samples using totRNAseq in a cost and labor-efficient way. For the first time, it is now feasible to study the association between fiber type distribution and e.g. health outcomes in large well-powered studies.

2016 ◽  
Vol 35 (6) ◽  
pp. 1359-1365 ◽  
Author(s):  
Michael J. Toth ◽  
Damien M. Callahan ◽  
Mark S. Miller ◽  
Timothy W. Tourville ◽  
Sarah B. Hackett ◽  
...  

1983 ◽  
Vol 245 (2) ◽  
pp. H265-H275 ◽  
Author(s):  
B. G. Mackie ◽  
R. L. Terjung

Blood flow to fast-twitch red (FTR), fast-twitch white (FTW), and slow-twitch red (STR) muscle fiber sections of the gastrocnemius-plantaris-soleus muscle group was determined using 15 +/- 3-microns microspheres during in situ stimulation in pentobarbital-anesthetized rats. Steady-state blood flows were assessed during the 10th min of contraction using twitch (0.1, 0.5, 1, 3, and 5 Hz) and tetanic (7.5, 15, 30, 60, and 120/min) stimulation conditions. In addition, an earlier blood flow determination was begun at 3 min (twitch series) or at 30 s (tetanic series) of stimulation. Blood flow was highest in the FTR (220-240 ml X min-1 X 100 g-1), intermediate in the STR (140), and lowest in the FTW (70-80) section during tetanic contraction conditions estimated to coincide with the peak aerobic function of each fiber type. These blood flows are fairly proportional to the differences in oxidative capacity among fiber types. Further, their absolute values are similar to those predicted from the relationship between blood flow and oxidative capacity found by others for dog and cat muscles. During low-frequency contraction conditions, initial blood flow to the FTR and STR sections were excessively high and not dependent on contraction frequency. However, blood flows subsequently decreased to values in keeping with the relative energy demands. In contrast, FTW muscle did not exhibit this time-dependent relative hyperemia. Thus, besides the obvious quantitative differences between skeletal muscle fiber types, there are qualitative differences in blood flow response during contractions. Our findings establish that, based on fiber type composition, a heterogeneity in blood flow distribution can occur within a whole muscle during contraction.


1997 ◽  
Vol 22 (4) ◽  
pp. 307-327 ◽  
Author(s):  
Robert S. Staron

This brief review attempts to summarize a number of studies on the delineation, development, and distribution of human skeletal muscle fiber types. A total of seven fiber types can be identified in human limb and trunk musculature based on the pH stability/ability of myofibrillar adenosine triphosphatase (mATPase). For most human muscles, mATPase-based fiber types correlate with the myosin heavy chain (MHC) content. Thus, each histochemically identified fiber has a specific MHC profile. Although this categorization is useful, it must be realized that muscle fibers are highly adaptable and that innumerable fiber type transients exist. Also, some muscles contain specific MHC isoforms and/or combinations that do not permit routine mATPase-based fiber typing. Although the major populations of fast and slow are, for the most part, established shortly after birth, subtle alterations take place throughout life. These changes appear to relate to alterations in activity and/or hormonal levels, and perhaps later in life, total fiber number. Because large variations in fiber type distribution can be found within a muscle and between individuals, interpretation of data gathered from human muscle is often difficult. Key words: aging, myosin heavy chains, myogenesis, myofibrillar adenosine triphosphate


1986 ◽  
Vol 64 (9) ◽  
pp. 1245-1251 ◽  
Author(s):  
C. Bouchard ◽  
J. A. Simoneau ◽  
G. Lortie ◽  
M. R. Boulay ◽  
M. Marcotte ◽  
...  

The purpose of the study was to estimate the genetic effect for skeletal muscle characteristics using pairs of nontwin brothers (n = 32), dizygotic (DZ) twins (n = 26), and monozygotic (MZ) twins (n = 35). They were submitted to a needle biopsy of the vastus lateralis for the determination of fiber type distribution (I, IIa, IIb) and the following enzymes were assayed for maximal activity: creatine kinase, hexokinase, phosphofructokinase (PFK), lactate dehydrogenase, malate dehydrogenase, 3-hydroxyacyl CoA dehydrogenase, and oxoglutarate dehydrogenase (OGDH). For the percentage of type I fibers, intraclass correlations were 0.33 (p < 0.05), 0.52 (p < 0.01), and 0.55 (p < 0.01) in brothers and DZ and MZ twins, respectively. MZ twins exhibited significant within-pair resemblance for all enzyme activities (0.30 ≤ r ≤ 0.68). In spite of these correlations, genetic analyses performed with the twin data alone indicated that there was no significant genetic effect for muscle fiber type I, IIa, and IIb distribution and fiber areas. Although there were significant correlations in MZ twins for all muscle enzyme activities, the often nonsignificant intraclass coefficients found in brothers and DZ twins suggest that variations in enzyme activities are highly related to common environmental conditions and nongenetic factors. However, genetic factors appear to be involved in the variation of regulatory enzymes of the glycolytic (PFK) and citric acid cycle (OGDH) pathways and in the variation of the oxidative to glycolytic activity ratio (PFK/OGDH ratio). Data show that these genetic effects reach only about 25–50% of the total phenotypic variation when data are adjusted for age and sex differences.


Author(s):  
Jorge Perez-Gomez ◽  
Nicolai Rytter ◽  
Camilla M. Mandrup ◽  
Jon Egelund ◽  
Bente Stallknecht ◽  
...  

The influence of the menopausal transition, with a consequent loss of oestrogen, on capillary growth in response to exercise training remains unknown. In the present study, we evaluated the effect of a period of intense endurance training on skeletal muscle angiogenesis in late pre-menopausal and recently post-menopausal women with an age difference of <4 years. Skeletal muscle biopsies were obtained from the thigh muscle prior to and after 12 weeks of intense aerobic cycle training, and analyzed for capillarization, fiber type distribution and content of vascular endothelial growth factor (VEGF). At baseline, there was no difference in capillary per fiber ratio (C:F; 1.41 ± 0.22 vs 1.40 ± 0.30), capillary density (CD; 305±61 vs 336±52 mm2), muscle fiber area (MFA) or percentage distribution of muscle fiber type I (47.3±10.1 vs 49.3±15.1 %) and type II (52.7±10.1 vs 50.7±15.1%) between the pre- and post-menopausal women. The training period resulted in a similar increase in C:F in pre- and post-menopausal women (by 9.2 vs 12.1 %, respectively) and CD (by 6.9 vs 8.9 %, respectively), whereas MFA and fiber type distribution remained unaltered. Skeletal muscle VEGF protein content was similar between groups at baseline and increased to a similar extent with training (by 21.1 vs 27.2 %, respectively) in the pre- and post-menopausal women. In conclusion, the loss of oestrogen per se at menopause does not influence the capillary growth response to intense aerobic exercise training.


1973 ◽  
Vol 51 (11) ◽  
pp. 825-831 ◽  
Author(s):  
R. H. Fitts ◽  
F. J. Nagle ◽  
R. G. Cassens

The fiber types present in miniature pig skeletal muscle were determined with enzyme histochemical techniques. Three distinct fiber types were found: a fast white fiber, a fast intermediate fiber, and a slow red fiber. The fiber types found in miniature pig (large mammal) skeletal muscle were different from those in rat (rodent) skeletal muscle where the fiber types are classified as fast white, slow intermediate, and fast red. The fiber type distribution in miniature pig skeletal muscle was not altered by either an endurance or sprint running program, despite physiologically measurable training effects. It is concluded that enzyme histochemistry is a good qualitative tool for assessing the fiber types present in a muscle but lacks the sensitivity to measure or quantitate changes due to training.


1993 ◽  
Vol 74 (2) ◽  
pp. 911-915 ◽  
Author(s):  
G. R. Adams ◽  
B. M. Hather ◽  
K. M. Baldwin ◽  
G. A. Dudley

We recently reported that 19 wk of heavy resistance training caused a decrease in the percentage of type IIb and an increase in the percentage of type IIa fibers as determined by qualitative histochemical analyses of myofibrillar adenosinetriphosphatase activity of biopsies of musculus vastus lateralis (Hather et al. Acta Physiol. Scand. 143: 177–185, 1991). These data were interpreted to suggest that resistance training had caused transformation among the fast-twitch fiber subtypes. To more clearly establish the influence of resistance training on muscle fiber composition, biopsies from the original study were analyzed biochemically for myosin heavy chain (MHC) composition by use of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and histochemically for fiber types by use of myofibrillar adenosinetriphosphatase activity. The results show that after training (n = 13), IIb MHC composition decreased (P < 0.05) from 19 +/- 4 to 7 +/- 1%. IIa MHC, in contrast, increased (P < 0.05) from 48 +/- 3 to 60 +/- 2%. These responses were essentially mirrored by alterations in fiber type distribution. The percentage of type IIb fibers decreased (P < 0.05) from 18 +/- 3 to 1 +/- 1%, whereas the percentage of type IIa fibers increased from 46 +/- 4 to 60 +/- 3% (P < 0.05). Neither I MHC composition nor type I fiber percentage changed with training. The control group (n = 4) showed no changes in MHC composition or fiber type distribution. These results suggest that heavy resistance training alters MHC composition in human skeletal muscle, presumably reflecting a change in genetic expression.


Sign in / Sign up

Export Citation Format

Share Document