scholarly journals Lipases and carboxylesterases are involved in interspecific pheromone differences between two moth species

Author(s):  
Arthur de Fouchier ◽  
Elise Fruitet ◽  
Rik Lievers ◽  
Peter Kuperus ◽  
Jennifer Emerson ◽  
...  

Abstract Moth sex pheromones are a classical model for studying sexual selection. Females produce a species-specific pheromone blend that attracts males. Revealing the enzymes involved in the interspecific variation in blend composition is key for understanding the evolution of these sexual communication systems. The nature of the enzymes involved in the variation of acetate esters, which are prominent compounds in moth pheromone blends, remains unclear. We identified enzymes involved in acetate metabolism in two closely related species: Heliothis (Chloridea) subflexa and H. (C.) virescens, which differ in production of acetate esters. Through comparative transcriptomic analyses and CRISPR/Cas9 knockouts, we showed that two lipases and two esterases induce lower levels of acetate esters in female pheromones. To place our findings in an evolutionary context, we explored the molecular evolution of related lipases and esterases in Lepidoptera. Together, our results show that lipases and carboxylesterases are unexpectedly involved in tuning Lepidoptera pheromones composition.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Emilie Dion ◽  
Li Xian Pui ◽  
Katie Weber ◽  
Antónia Monteiro

AbstractWhile the diversity of sex pheromone communication systems across insects is well documented, the mechanisms that lead to such diversity are not well understood. Sex pheromones constitute a species-specific system of sexual communication that reinforces interspecific reproductive isolation. When odor blends evolve, the efficacy of male-female communication becomes compromised, unless preference for novel blends also evolves. We explore odor learning as a possible mechanism leading to changes in sex pheromone preferences in the butterfly Bicyclus anynana. Our experiments reveal mating patterns suggesting that mating bias for new blends can develop following a short learning experience, and that this maternal experience impacts the mating outcome of offspring without further exposure. We propose that odor learning can be a key factor in the evolution of sex pheromone blend recognition and in chemosensory speciation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicholas M. Grebe ◽  
Annika Sharma ◽  
Sara M. Freeman ◽  
Michelle C. Palumbo ◽  
Heather B. Patisaul ◽  
...  

AbstractContemporary theory that emphasizes the roles of oxytocin and vasopressin in mammalian sociality has been shaped by seminal vole research that revealed interspecific variation in neuroendocrine circuitry by mating system. However, substantial challenges exist in interpreting and translating these rodent findings to other mammalian groups, including humans, making research on nonhuman primates crucial. Both monogamous and non-monogamous species exist within Eulemur, a genus of strepsirrhine primate, offering a rare opportunity to broaden a comparative perspective on oxytocin and vasopressin neurocircuitry with increased evolutionary relevance to humans. We performed oxytocin and arginine vasopressin 1a receptor autoradiography on 12 Eulemur brains from seven closely related species to (1) characterize receptor distributions across the genus, and (2) examine differences between monogamous and non-monogamous species in regions part of putative “pair-bonding circuits”. We find some binding patterns across Eulemur reminiscent of olfactory-guided rodents, but others congruent with more visually oriented anthropoids, consistent with lemurs occupying an ‘intermediary’ evolutionary niche between haplorhine primates and other mammalian groups. We find little evidence of a “pair-bonding circuit” in Eulemur akin to those proposed in previous rodent or primate research. Mapping neuropeptide receptors in these nontraditional species questions existing assumptions and informs proposed evolutionary explanations about the biological bases of monogamy.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 4
Author(s):  
Oleg S. Alexandrov ◽  
Olga V. Razumova ◽  
Gennady I. Karlov

5S rDNA is organized as a cluster of tandemly repeated monomers that consist of the conservative 120 bp coding part and non-transcribed spacers (NTSs) with different lengths and sequences among different species. The polymorphism in the 5S rDNA NTSs of closely related species is interesting for phylogenetic and evolutional investigations, as well as for the development of molecular markers. In this study, the 5S rDNA NTSs were amplified with universal 5S1/5S2 primers in some species of the Elaeagnaceae Adans. family. The polymerase chain reaction (PCR) products of five Elaeagnus species had similar lengths near 310 bp and were different from Shepherdia canadensis (L.) Nutt. and Sh. argentea (Pusch.) Nutt. samples (260 bp and 215 bp, respectively). The PCR products were cloned and sequenced. An analysis of the sequences revealed that intraspecific levels of NTS identity are high (approximately 95–96%) and similar in the Elaeagnus L. species. In Sh. argentea, this level was slightly lower due to the differences in the poly-T region. Moreover, the intergeneric and intervarietal NTS identity levels were studied and compared. Significant differences between species (except E. multiflora Thunb. and E. umbellata Thunb.) and genera were found. Herein, a range of the NTS features is discussed. This study is another step in the investigation of the molecular evolution of Elaeagnaceae and may be useful for the development of species-specific DNA markers in this family.


Author(s):  
Samantha Wong

Climate change has been associated in phenological shifts for a variety of taxa. Amphibians, specifically the order Anura (frogs and toads), are considered particularly vulnerable due to their sensitivity to anthropogenic and environmental change. Previous research has documented shifts in the timing of anuran breeding that can be attributed, in part, to climate change, with potential implications for reproduction, survival, and development. This study aims to investigate how air temperature is associated with anuran calling phenology. I will examine the temporal trends in spring and summer air temperature in a lake in northern Ontario, Canada. and quantify seasonal patterns of calling anuran species using acoustic monitoring over a four-month period. I predict that there will be interspecific variation in peak calling associated with air temperature. Additionally, I expect to find asymmetrical association between air temperature and anuran species’ calling behaviour – wherein prolonged breeding species will have a larger optimal temperature range for calling compared to explosive breeding species. The findings of this research will aid in future conservation and provide insight for management strategies of anurans in Canada in response to anticipated climate warming.


2019 ◽  
Author(s):  
Andrea Acurio ◽  
Flor T. Rhebergen ◽  
Sarah Paulus ◽  
Virginie Courtier-Orgogozo ◽  
Michael Lang

AbstractBackgroundMale genitals have repeatedly evolved left-right asymmetries, and the causes of such evolution remain unclear. TheDrosophila nannopteragroup contains four species, among which three exhibit left-right asymmetries of distinct genital organs. In the most studied species,Drosophila pachea, males display asymmetric genital lobes and they mate right-sided on top of the female. Copulation position of the other species is unknown.ResultsTo assess whether the evolution of genital asymmetry could be linked to the evolution of one-sided mating, we examined phallus morphology and copulation position inD. pacheaand closely related species. The phallus was found to be symmetric in all investigated species exceptD. pachea, which display an asymmetric phallus with a right-sided gonopore, andD. acanthoptera, which harbor an asymmetrically bent phallus. In all examined species, males were found to position themselves symmetrically on top of the female, except inD. pacheaandD. nannoptera, where males mated right-sided, in distinctive, species-specific positions. In addition, the copulation duration was found to be increased innannopteragroup species compared to closely related outgroup species.ConclusionOur study shows that gains, and possibly losses, of asymmetry in genital morphology and mating position have evolved repeatedly in thenannopteragroup. Current data does not allow us to conclude whether genital asymmetry has evolved in response to changes in mating position, or vice versa.


2020 ◽  
Author(s):  
Katherine M. Eaton ◽  
Moisés A. Bernal ◽  
Nathan J.C. Backenstose ◽  
Trevor J. Krabbenhoft

AbstractLocal adaptation can drive diversification of closely related species across environmental gradients and promote convergence of distantly related taxa that experience similar conditions. We examined a potential case of adaptation to novel visual environments in a species flock (Great Lakes salmonids, genus Coregonus) using a new amplicon genotyping protocol on the Oxford Nanopore Flongle. Five visual opsin genes were amplified for individuals of C. artedi, C. hoyi, C. kiyi, and C. zenithicus. Comparisons revealed species-specific differences in the coding sequence of rhodopsin (Tyr261Phe substitution), suggesting local adaptation by C. kiyi to the blue-shifted depths of Lake Superior. Parallel evolution and “toggling” at this amino acid residue has occurred several times across the fish tree of life, resulting in identical changes to the visual systems of distantly related taxa across replicated environmental gradients. Our results suggest that ecological differences and local adaptation to distinct visual environments are strong drivers of both evolutionary parallelism and diversification.


Zootaxa ◽  
2018 ◽  
Vol 4403 (2) ◽  
pp. 378 ◽  
Author(s):  
EUGENYI A. MAKARCHENKO ◽  
MARINA A. MAKARCHENKO ◽  
ALEXANDER A. SEMENCHENKO ◽  
DMITRY M. PALATOV

Illustrated descriptions of the adult male, pupa and fourth instar larva, as well as DNA barcoding results of Chaetocladius (Chaetocladius) elisabethae sp. nov. in comparison with closely related species of Chaetocladius s. str. from the Moscow Region are provided. A reference 658 bp barcode sequence from a fragment of the mitochondrial gene cytochrome oxidase I (COI) was used as a tool for species delimitation. Comparisons with corresponding regions of COI between C. (s. str.) elisabethae sp. nov. and other species of the subgenus produced K2P genetic distances of 0.11–0.16, values well associated with interspecific variation. The barcodes of the new species were identical to the Chaetocladius sp. 2ES in BOLD systems. Molecular data were also used for the reconstruction of the phylogenetic relationships within the subgenus Chaetocladius s. str. 


2017 ◽  
Vol 284 (1852) ◽  
pp. 20170163 ◽  
Author(s):  
Sean T. Giery ◽  
Craig A. Layman

Natural selection plays an important role in the evolution of sexual communication systems. Here, we assess the effect of two well-known selection agents, transmission environment and predation, on interpopulation variation in sexual signals. Our model system is a series of 21 populations of Bahamian mosquitofish subjected to independent variation in optical conditions and predation risk. We show that optically diverse environments, caused by locally variable dissolved organic carbon concentrations, rather than spatial variation in predation, drove divergence in fin coloration (fin redness). We found a unimodal pattern of phenotypic variation along the optical gradient indicating a threshold-type response of visual signals to broad variation in optical conditions. We discuss evolutionary and ecological mechanisms that may drive such a pattern as well as the implications of non-monotonic clines for evolutionary differentiation.


Sign in / Sign up

Export Citation Format

Share Document