scholarly journals A Fungal Modified Material With High Uranium (VI) Absorption Capacity And Strong Anti-Interference Ability

Author(s):  
Ni Tan ◽  
Qiaorong Ye ◽  
Yaqing Liu ◽  
Yincheng Yang ◽  
Zui Ding ◽  
...  

Abstract With polydioxyethylene ether as the bridge chain, a new fungal modified material with diamidoxime groups was prepared by a series of uncomplex synthesis reaction. The orthogonal experiment obtained its optimized adsorption conditions as follows: the initial pH value 6.5, the initial uranyl concentration 40 mg L-1, the contact time 130 min, and the solid-liquid ratio 25 mg L-1. The maximum adsorption capacity of target material was 446.20 mg g-1, and it was much greater than that of the similar monoamidoxime material (295.48 mg g−1). The linear Langmuir (R2 = 0.9856) isotherm models and the linear pseudo-second-order kinetic model (R2 = 0.9931) fit the experimental data of uranium (VI) adsorption better, indicating the adsorption mechanism should mainly be the monolayer adsorption and chemical process. In addition, the relevant experiments exhibited the prepared material was of the good reuse and the excellent anti-interference performance, which suggested the new acquisition should also have well-applied prospect in the future.

Author(s):  
Ayben Polat ◽  
Sukru Aslan

The sorption of Cu2+ ions from aqueous solutions by eggshell was investigated in a batch experimental system with respect to the temperature, initial Cu2+ concentrations, pH, and biosorbent doses. The adsorption equilibrium was well described by the Langmuir isotherm model with the maximum adsorption capacity of 5.05 mg Cu2+/g eggshell at 25 °C. The value of qe increased with increasing the temperature while also increases the release of Ca2+ and HCO−3 ions from the eggshell. The highest sorption of Cu onto the waste eggshell was determined at the initial pH value of 4.0. The results confirming that the adsorption reaction of Cu2+ on the eggshell was thought to be endothermic. A comparison of the kinetic models such as pseudo first and second-order kinetics, intraparticle diffusion, and Elovich on the sorption rate demonstrated that the system was best described by the pseudo second-order kinetic model.


2013 ◽  
Vol 295-298 ◽  
pp. 1154-1160 ◽  
Author(s):  
Guo Zhi Deng ◽  
Xue Yuan Wang ◽  
Xian Yang Shi ◽  
Qian Qian Hong

The objective of this paper is to investigate the feasibility of phenol adsorption from aqueous solution by Pinus massoniana biochar. Adsorption conditions, including contact time, initial phenol concentration, adsorbent dosage, strength of salt ions and pH, have been investigated by batch experiments. Equilibrium can be reached in 24 h for phenol from 50 to 250 mg• L-1. The optimum pH value for this kind of biochar is 5.0. The amount of phenol adsorbed per unit decreases with the increase in adsorbent dosage. The existence of salt ions makes negligible influence on the equilibrium adsorption capacity. The experimental data is analyzed by the Freundlich and Langmuir isotherm models. Equilibrium data fits well to the Freundlich model. Adsorption kinetics models are deduced and the pseudo-second-order kinetic model provides a good correlation for the adsorbent process. The results show that the Pinus massoniana biochar can be utilized as an effective adsorption material for the removal of phenol from aqueous solution.


2014 ◽  
Vol 79 (7) ◽  
pp. 815-828 ◽  
Author(s):  
Nikola Ilic ◽  
Slavica Lazarevic ◽  
Vladana Rajakovic-Ognjanovic ◽  
Ljubinka Rajakovic ◽  
Djordje Janackovic ◽  
...  

The sorption of inorganic arsenic species, As(III) and As(V), from water by sepiolite modified with hydrated iron(III) oxide was investigated at 25 ?C through batch studies. The influence of the initial pH value, the initial As concentrations, the contact time and types of water on the sorption capacity was investigated. Two types of water were used, deionized and groundwater. The maximal sorption capacity for As(III) from deionized water was observed at initial and final pH value 7.0, while the bonding of As(V) was observed to be almost pH independent for pH value in the range from 2.0 to 7.0, and the significant decrease in the sorption capacity was observed at pH values above 7.0. The sorption capacity at initial pH 7.0 was about 10 mg g?1 for As(III) and 4.2 mg g?1 for As(V) in deionized water. The capacity in groundwater was decreased by 40 % for As(III) and by 20 % for As(V). The Langmuir model and pseudo-second order kinetic model revealed good agreement with the experimental results. The results show that Fe(III)-modified sepiolite exhibits significant affinity for arsenic removal and it has a potential for the application in water purification processes.


2018 ◽  
Vol 7 (3) ◽  
pp. 966
Author(s):  
Kartik Kulkarni ◽  
Varsha Sudheer ◽  
C R Girish

The potential of agricultural waste cashew nut shells as an adsorbent for removing phenol from wastewater is presented in this paper. The adsorbent was treated with 3M sulphuric acid in order to improve the properties. The experimental parameters such as adsorbent dosage, concentration and temperature were optimized with response surface methodology (RSM). The isotherm data were tested with different isotherm models and it obeyed Freundlich Isotherm showing the multilayer adsorption. The kinetic data satisfied pseudo-first order kinetic model. The maximum adsorption capacity was calculated to be 35.08 mg/g proving the capability of cashew nut shells for removing phenol from wastewater.  


2018 ◽  
Vol 77 (5) ◽  
pp. 1363-1371 ◽  
Author(s):  
Yong Fu ◽  
Yue Huang ◽  
Jianshe Hu ◽  
Zhengjie Zhang

Abstract A green functional adsorbent (CAD) was prepared by Schiff base reaction of chitosan and amino-modified diatomite. The morphology, structure and adsorption properties of the CAD were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and Brunauer Emmett Teller measurements. The effect of pH value, contact time and temperature on the adsorption of Hg(II) ions for the CAD is discussed in detail. The experimental results showed that the CAD had a large specific surface area and multifunctional groups such as amino, hydroxyl and Schiff base. The optimum adsorption effect was obtained when the pH value, temperature and contact time were 4, 25 °C and 120 min, respectively, and the corresponding maximum adsorption capacity of Hg(II) ions reached 102 mg/g. Moreover, the adsorption behavior of Hg(II) ions for the CAD followed the pseudo-second-order kinetic model and Langmuir model. The negative ΔG0 and ΔH0 suggested that the adsorption was a spontaneous exothermic process.


2014 ◽  
Vol 71 (2) ◽  
pp. 174-182 ◽  
Author(s):  
Ruihua Huang ◽  
Qian Liu ◽  
Lujie Zhang ◽  
Bingchao Yang

A kind of biocomposite was prepared by the intercalation of chitosan in bentonite and the cross-linking reaction of chitosan with glutaraldehyde, which was referred to as cross-linked chitosan/bentonite (CCS/BT) composite. Adsorptive removal of methyl orange (MO) from aqueous solutions was investigated by batch method. The adsorption of MO onto CCS/BT composite was affected by the ratio of chitosan to BT and contact time. pH value had only a minor impact on MO adsorption in a wide pH range. Adsorption kinetics was mainly controlled by the pseudo-second-order kinetic model. The adsorption of MO onto CCS/BT composite followed the Langmuir isotherm model, and the maximum adsorption capacity of CCS/BT composite calculated by the Langmuir model was 224.8 mg/g. Experimental results indicated that this adsorbent had a potential for the removal of MO from aqueous solutions.


2021 ◽  
Vol 21 (1) ◽  
pp. 623-631
Author(s):  
Yueling Zhao ◽  
Haibo Liu ◽  
Tianhu Chen ◽  
Dong Chen ◽  
Chen Chen ◽  
...  

Natural siderite was selected as a raw material for preparing nano zero-valent iron (nZVI). The efficiency of the as-synthesized nZVI for PO3−4–P removal was investigated, and the effects of the annealing temperature, pH, initial PO3−4–P concentration, adsorption temperature and oxygen were investigated. The results indicated that after annealing at 550 °C, nZVI exhibited an average crystal size of 56.3 nm and a surface area of 14.1 m2/g. A decrease in pH and an increase in oxygen availability enhanced the removal efficiency. The adsorption process, which was spontaneous and exothermic according to the thermodynamic analysis, agreed well with the pseudo-second-order kinetic model. Based on the Langmuir equilibrium isotherms, the capacity of nZVI to adsorb phosphorus was determined to be 33.18 mg/L. The optimized conditions for the experimental conditions were defined by an orthogonal experiment as follows: initial P concentration 2 mg/L, initial pH 4, iron dose 2 g/L, adsorption time 60 min. The experimental results suggested that the as-prepared nZVI was a promising adsorbent for the removal of phosphate.


2020 ◽  
Vol 12 (3) ◽  
pp. 1174 ◽  
Author(s):  
Lulit Habte ◽  
Natnael Shiferaw ◽  
Mohd Danish Khan ◽  
Thenepalli Thriveni ◽  
Ji Whan Ahn

In the present work, waste eggshells were used as a precursor for the synthesis of aragonite crystals through the wet carbonation method. Cadmium (Cd2+) and lead (Pb2+) were removed by the synthesized aragonite from synthetic wastewater. The influence of initial solution pH, contact time, Cd2+ and Pb2+ concentration, and sorbent dosage were evaluated. The major sorption was observed in the first 100 mins and 360 mins for Pb2+and Cd2+ respectively reaching sorption equilibrium at 720 mins (12 hr). The sorption capacity toward Pb2+ was much higher than toward Cd2+. Both heavy metals displayed high sorption capacities at initial pH 6. The pseudo-second-order kinetic model fits well with the experimental data with a higher correlation coefficient R2. Two isotherm models were also evaluated for the best fit with the experimental data obtained. Langmuir isotherm best fits the sorption of the metals on aragonite synthesized from eggshells. X-ray diffraction (XRD) and Scanning electron microscopy (SEM) results of sorbent after sorption showed that the mechanism of sorption was dominated by surface precipitation. Therefore, aragonite crystals synthesized from waste eggshells can be a potential substitute source for the removal of Cd2+ and Pb2+ from contaminated water.


2021 ◽  
Vol 13 (8) ◽  
pp. 1512-1520
Author(s):  
MiaoSen Zhang ◽  
SiYang Wang ◽  
Zheng Hu ◽  
RunZe Zhang ◽  
XiaoLi Wang

China is a big coal producing country, there are a lot of coal gangue piled up. The zeolite X was synthesized by alkali melting and hydrothermal method based on the coal gangue from Chifeng city, Inner Mongolia. The obtained zeolite X sample is characterized by X-ray diffraction, SEM, EDS spectrum and IR which showed the X zeolite is an octahedral structure with complete crystal shape and uniform grain size. The results of BET showed the specific surface area of zeolite X is 354.8 m2/g and the minimum pore size is 3.8 nm which indicated that the zeolite X belongs to mesoporous materials. The adsorption conditions of the zeolite X adsorbent on copper ions were optimized. A solution containing Cu2+ ions with an initial concentration of 300 mg/L was added to the zeolite X with a dosage of 0.1 g and the initial pH value of the solution was adjusted to 6. Then the solution was oscillated for 120 min at 225 r/min. The maximum adsorption capacity and removal rate were 148.6 mg/g and 99.1%, respectively. The adsorption mechanism was discussed by adsorption kinetics and thermodynamics. The quasi-second order kinetic equation can be well used to describe the adsorption kinetics of zeolite X to Cu2+ (R2 = 0.9994) and Langmuir can well describe the adsorption behavior of zeolite X to Cu2+ (R2 = 0.9995) which showed the adsorption is a monolayer of chemical adsorption. The adsorption capacity of zeolite X to Cu2+ is about 4.0 times that of coal gangue, indicating that the zeolite X has good adsorption capacity.


2015 ◽  
Vol 103 (12) ◽  
Author(s):  
Sahar El-Sayed Abd El-Kader Sharaf El-Deen ◽  
Karam Fatwhi Allan ◽  
Mohamed Holeil ◽  
Gehan El-Sayed Abd El-Kader Sharaf El-Deen

AbstractIn this study, the adsorptive removal of selenium (IV) from aqueous solution by titanate nanoflower (TNF) was prepared via alkaline hydrothermal method. The morphology and crystal phase of the TNF were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscope (EDX), selected area electron diffraction (SAED), thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR) and specific surface area. This study was conducted to determine the influence of various operating parameters such as pH, adsorbate weight, initial anion concentration, contact time and solution temperature on the adsorptive removal of selenium (IV). Equilibrium adsorption data were analyzed using Freundlich, Langmuir and Dubinin–Radushkevich (D–R) isotherm models. The results demonstrated that the adsorption was well described by the Langmuir adsorption isotherm with the maximum adsorption capacity up to 46.52 mg/g at pH 3.5. The adsorption of Se(IV) anions onto the surface of TNF may proceed through outer sphere electrostatic interactions and/or inner-sphere complexation interaction. The kinetic data indicated that the adsorption fit well with the pseudo-second-order kinetic model. The thermodynamic parameters implied that the adsorption process was spontaneous and endothermic in nature.


Sign in / Sign up

Export Citation Format

Share Document