scholarly journals Discussing Anthropogenic Global Warming from an Econometric Perspective: A Change in Forecasting Based on the ARIMA Paleoclimate Time Series Model

Author(s):  
Gilmar Veriato Fluzer Santos ◽  
Lucas Gamalel Cordeiro ◽  
Claudio Antonio Rojo ◽  
Edison Luiz Leismann

Abstract Global warming has divided the scientific community worldwide with predominance for anthropogenic alarmism. This article aims to project a climate change scenario using a stochastic model of paleotemperature time series and compare it with the dominant thesis. The ARIMA model – an integrated autoregressive process of moving averages, known as Box-Jenkins - was used for this purpose. The results showed that the estimates of the model parameters were below 1°C for a scenario of 100 years which suggests a period of temperature reduction and a probable cooling, contrary to the prediction of the IPCC and the anthropogenic current of an increase in 1.50° C to 2.0° C by the end of this century. Thus, we hope with this study to contribute to the discussion by adding a statistical element of paleoclimate in counterpoint to the current consensus and to placing the debate in a long-term historical dimension, in line with other research present in climate sciences and statistics.

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1556 ◽  
Author(s):  
Daeeop Lee ◽  
Giha Lee ◽  
Seongwon Kim ◽  
Sungho Jung

In establishing adequate climate change policies regarding water resource development and management, the most essential step is performing a rainfall-runoff analysis. To this end, although several physical models have been developed and tested in many studies, they require a complex grid-based parameterization that uses climate, topography, land-use, and geology data to simulate spatiotemporal runoff. Furthermore, physical rainfall-runoff models also suffer from uncertainty originating from insufficient data quality and quantity, unreliable parameters, and imperfect model structures. As an alternative, this study proposes a rainfall-runoff analysis system for the Kratie station on the Mekong River mainstream using the long short-term memory (LSTM) model, a data-based black-box method. Future runoff variations were simulated by applying a climate change scenario. To assess the applicability of the LSTM model, its result was compared with a runoff analysis using the Soil and Water Assessment Tool (SWAT) model. The following steps (dataset periods in parentheses) were carried out within the SWAT approach: parameter correction (2000–2005), verification (2006–2007), and prediction (2008–2100), while the LSTM model went through the process of training (1980–2005), verification (2006–2007), and prediction (2008–2100). Globally available data were fed into the algorithms, with the exception of the observed discharge and temperature data, which could not be acquired. The bias-corrected Representative Concentration Pathways (RCPs) 4.5 and 8.5 climate change scenarios were used to predict future runoff. When the reproducibility at the Kratie station for the verification period of the two models (2006–2007) was evaluated, the SWAT model showed a Nash–Sutcliffe efficiency (NSE) value of 0.84, while the LSTM model showed a higher accuracy, NSE = 0.99. The trend analysis result of the runoff prediction for the Kratie station over the 2008–2100 period did not show a statistically significant trend for neither scenario nor model. However, both models found that the annual mean flow rate in the RCP 8.5 scenario showed greater variability than in the RCP 4.5 scenario. These findings confirm that the LSTM runoff prediction presents a higher reproducibility than that of the SWAT model in simulating runoff variation according to time-series changes. Therefore, the LSTM model, which derives relatively accurate results with a small amount of data, is an effective approach to large-scale hydrologic modeling when only runoff time-series are available.


2009 ◽  
Vol 1 (1) ◽  
pp. 77-90 ◽  
Author(s):  
Marian Melo ◽  
Milan Lapin ◽  
Ingrid Damborska

Abstract In this paper methods of climate-change scenario projection in Slovakia for the 21st century are outlined. Temperature and precipitation time series of the Hurbanovo Observatory in 1871-2007 (Slovak Hydrometeorological Institute) and data from four global GCMs (GISS 1998, CGCM1, CGCM2, HadCM3) are utilized for the design of climate change scenarios. Selected results of different climate change scenarios (based on different methods) for the region of Slovakia (up to 2100) are presented. The increase in annual mean temperature is about 3°C, though the results are ambiguous in the case of precipitation. These scenarios are required by users in impact studies, mainly from the hydrology, agriculture and forestry sectors.


2018 ◽  
Vol 79 (4) ◽  
pp. 335-343
Author(s):  
Firoz Ahmad ◽  
Md Meraj Uddin ◽  
Laxmi Goparaju

Abstract Analysing the forest fires events in climate change scenario is essential for protecting the forest from further degradation. Geospatial technology is one of the advanced tools that has enormous capacity to evaluate the number of data sets simultaneously and to analyse the hidden relationships and trends. This study has evaluated the long term forest fire events with respect to India’s state boundary, its seasonal monthly trend, all forest categories of LULC and future climate anomalies datasets over the Indian region. Furthermore, the spatial analysis revealed the trend and their relationship. The state wise evaluation of forest fire events reflects that the state of Mizoram has the highest forest fire frequency percentage (11.33%) followed by Chhattisgarh (9.39%), Orissa (9.18%), Madhya Pradesh (8.56%), Assam (8.45%), Maharashtra (7.35%), Manipur (6.94%), Andhra Pradesh (5.49%), Meghalaya (4.86%) and Telangana (4.23%) when compared to the total country’s forest fire counts. The various LULC categories which represent the forest show some notable forest fire trends. The category ‘Deciduous Broadleaf Forest’ retain the highest fire frequency equivalent to 38.1% followed by ‘Mixed Forest’ (25.6%), ‘Evergreen Broadleaf Forest’ (16.5%), ‘Deciduous Needle leaf Forest’ (11.5%), ‘Shrub land’ (5.5%), ‘Evergreen Needle leaf Forest’ (1.5%) and ‘Plantations’ (1.2%). Monthly seasonal variation of forest fire events reveal the highest forest fire frequency percentage in the month of ‘March’ (55.4%) followed by ‘April’ (28.2%), ‘February’ (8.1%), ‘May’ (6.7%), ‘June’ (0.9%) and ‘January’ (0.7%). The evaluation of future climate data for the year 2030 shows significant increase in forest fire seasonal temperature and abrupt annual rainfall pattern; therefore, future forest fires will be more intensified in large parts of India, whereas it will be more crucial for some of the states such as Orissa, Chhattisgarh, Mizoram, Assam and in the lower Sivalik range of Himalaya. The deciduous forests will further degrade in future. The highlight/results of this study have very high importance because such spatial relationship among the various datasets is analysed at the country level in view of the future climate scenario. Such analysis gives insight to the policymakers to make sustainable future plans for prioritization of the various state forests suffering from forest fire keeping in mind the future climate change scenario.


2018 ◽  
Vol 28 (4) ◽  
pp. 312-318 ◽  
Author(s):  
José Luis Aragón-Gastélum ◽  
Joel Flores ◽  
Enrique Jurado ◽  
Hugo M. Ramírez-Tobías ◽  
Erika Robles-Díaz ◽  
...  

AbstractWe assessed inter-seasonal dynamics of seed banks, dormancy and seed germination in three endemic Chihuahuan Desert succulent species, under simulated soil warming conditions. Hexagonal open top-chambers (OTCs) were used to increase soil temperature. Seeds ofEchinocactus platyacanthus(Cactaceae),Yucca filiferaandAgave striata(Asparagaceae) were collected and buried within and outside OTCs. During the course of one year, at the end of each season, seed batches were exhumed to test viability and germination. Soil temperature in OTCs was higher than in control plots.Yucca filiferaseeds always had high germination independently of warming treatment and season.Agave striataseeds from OTCs had higher germination than those from control plots.Agave striataexhibited low germination in fresh seeds, but high germination in spring. Seeds from this species lost viability throughout the experimental timeframe, and had no viable seeds remaining in the soil.Echinocactus platyacanthusshowed high germination in fresh seeds and displayed dormancy cycling, leading to high germination in spring, low germination in summer and autumn, and high germination in winter. Germination of this species was also higher in seeds from OTCs than those from control plots.Echinocactus platyacanthusformed soil seed banks and its cycle of inter-seasonal dormancy/germination could be an efficient physiological mechanism in a climate change scenario. Under global warming projections, our results suggest that future temperatures may still fall within the three studied species’ thermal germination range. However, higher germination forA. striataandE. platyacanthusat warmer temperatures may reduce the number of seeds retained in the seed bank, and this could be interpreted as limiting their ability to spread risk over time. This is the first experimental study projecting an increase in soil temperature to assess population traits of succulent plants under a climate change scenario for American deserts.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 385
Author(s):  
Beatrice Nöldeke ◽  
Etti Winter ◽  
Yves Laumonier ◽  
Trifosa Simamora

In recent years, agroforestry has gained increasing attention as an option to simultaneously alleviate poverty, provide ecological benefits, and mitigate climate change. The present study simulates small-scale farmers’ agroforestry adoption decisions to investigate the consequences for livelihoods and the environment over time. To explore the interdependencies between agroforestry adoption, livelihoods, and the environment, an agent-based model adjusted to a case study area in rural Indonesia was implemented. Thereby, the model compares different scenarios, including a climate change scenario. The agroforestry system under investigation consists of an illipe (Shorea stenoptera) rubber (Hevea brasiliensis) mix, which are both locally valued tree species. The simulations reveal that farmers who adopt agroforestry diversify their livelihood portfolio while increasing income. Additionally, the model predicts environmental benefits: enhanced biodiversity and higher carbon sequestration in the landscape. The benefits of agroforestry for livelihoods and nature gain particular importance in the climate change scenario. The results therefore provide policy-makers and practitioners with insights into the dynamic economic and environmental advantages of promoting agroforestry.


Sign in / Sign up

Export Citation Format

Share Document