scholarly journals Classification of Rice Leaf Blast Severity Using Hyperspectral Imaging

Author(s):  
Guosheng Zhang ◽  
Tongyu Xu ◽  
Youwen Tian ◽  
Shuai Feng ◽  
Dongxue Zhao ◽  
...  

Abstract Background: Hyperspectral imaging is an emerging technology applied in plant disease research, including disease detection, multiple disease identification, disease severity assessment, and disease resistance evaluation. Rice leaf blast is prevalent all over the world and is a serious threat to rice yield and quality. In this paper, the standard deviation (STD) of the spectral reflectance of whole leaves was calculated and a support vector machine (SVM) model was built to classify the degree of rice leaf blast at different growth stages.Results: The classification accuracy of the full-spectrum-based SVM model at jointing stage, booting stage and heading stage was 94.44%, 81.58% and 80.48%, respectively. The corresponding macro recall values were 0.9714, 0.715 and 0.79. The average STD of the spectral reflectance of the whole leaf differed not only within samples with different disease grades, but also those with the same disease level. Conclusion: The STD of the spectral reflectance of whole leaf could be utilized to classify the rice leaf blast degree at different growth stages. The classification method was derived from physiological phenomena that were visible to the naked eye, making it more intuitive and convincing.

2020 ◽  
Vol 49 (5) ◽  
pp. 571-578 ◽  
Author(s):  
GuoSheng Zhang ◽  
TongYu Xu ◽  
YouWen Tian ◽  
Han Xu ◽  
JiaYu Song ◽  
...  

2021 ◽  
Vol 13 (16) ◽  
pp. 3207
Author(s):  
Shuai Feng ◽  
Yingli Cao ◽  
Tongyu Xu ◽  
Fenghua Yu ◽  
Dongxue Zhao ◽  
...  

Rice leaf blast, which is seriously affecting the yield and quality of rice around the world, is a fungal disease that easily develops under high temperature and humidity conditions. Therefore, the use of accurate and non-destructive diagnostic methods is important for rice production management. Hyperspectral imaging technology is a type of crop disease identification method with great potential. However, a large amount of redundant information mixed in hyperspectral data makes it more difficult to establish an efficient disease classification model. At the same time, the difficulty and small scale of agricultural hyperspectral imaging data acquisition has resulted in unrepresentative features being acquired. Therefore, the focus of this study was to determine the best classification features and classification models for the five disease classes of leaf blast in order to improve the accuracy of grading the disease. First, the hyperspectral imaging data were pre-processed in order to extract rice leaf samples of five disease classes, and the number of samples was increased by data augmentation methods. Secondly, spectral feature wavelengths, vegetation indices and texture features were obtained based on the amplified sample data. Thirdly, seven one-dimensional deep convolutional neural networks (DCNN) models were constructed based on spectral feature wavelengths, vegetation indices, texture features and their fusion features. Finally, the model in this paper was compared and analyzed with the Inception V3, ZF-Net, TextCNN and bidirectional gated recurrent unit (BiGRU); support vector machine (SVM); and extreme learning machine (ELM) models in order to determine the best classification features and classification models for different disease classes of leaf blast. The results showed that the classification model constructed using fused features was significantly better than the model constructed with a single feature in terms of accuracy in grading the degree of leaf blast disease. The best performance was achieved with the combination of the successive projections algorithm (SPA) selected feature wavelengths and texture features (TFs). The modeling results also show that the DCNN model provides better classification capability for disease classification than the Inception V3, ZF-Net, TextCNN, BiGRU, SVM and ELM classification models. The SPA + TFs-DCNN achieved the best classification accuracy with an overall accuracy (OA) and Kappa of 98.58% and 98.22%, respectively. In terms of the classification of the specific different disease classes, the F1-scores for diseases of classes 0, 1 and 2 were all 100%, while the F1-scores for diseases of classes 4 and 5 were 96.48% and 96.68%, respectively. This study provides a new method for the identification and classification of rice leaf blast and a research basis for assessing the extent of the disease in the field.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3147 ◽  
Author(s):  
Liu Zhang ◽  
Zhenhong Rao ◽  
Haiyan Ji

In this study, a hyperspectral imaging system of 866.4–1701.0 nm was selected and combined with multivariate methods to identify wheat kernels with different concentrations of omethoate on the surface. In order to obtain the optimal model combination, three preprocessing methods (standard normal variate (SNV), Savitzky–Golay first derivative (SG1), and multivariate scatter correction (MSC)), three feature extraction algorithms (successive projections algorithm (SPA), random frog (RF), and neighborhood component analysis (NCA)), and three classifier models (decision tree (DT), k-nearest neighbor (KNN), and support vector machine (SVM)) were applied to make a comparison. Firstly, based on the full wavelengths modeling analysis, it was found that the spectral data after MSC processing performed best in the three classifier models. Secondly, three feature extraction algorithms were used to extract the feature wavelength of MSC processed data and based on feature wavelengths modeling analysis. As a result, the MSC–NCA–SVM model performed best and was selected as the best model. Finally, in order to verify the reliability of the selected model, the hyperspectral image was substituted into the MSC–NCA–SVM model and the object-wise method was used to visualize the image classification. The overall classification accuracy of the four types of wheat kernels reached 98.75%, which indicates that the selected model is reliable.


Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 97 ◽  
Author(s):  
Siddharth Chaudhary ◽  
Sarawut Ninsawat ◽  
Tai Nakamura

The aim of this study was to investigate the potential of the non-destructive hyperspectral imaging system (HSI) and accuracy of the model developed using Support Vector Machine (SVM) for determining trace detection of explosives. Raman spectroscopy has been used in similar studies, but no study has been published which is based on measurement of reflectance from hyperspectral sensor for trace detection of explosives. HSI used in this study has an advantage over existing techniques due to its combination of imaging system and spectroscopy, along with being contactless and non-destructive in nature. Hyperspectral images of the chemical were collected using the BaySpec hyperspectral sensor which operated in the spectral range of 400–1000 nm (144 bands). Image processing was applied on the acquired hyperspectral image to select the region of interest (ROI) and to extract the spectral reflectance of the chemicals which were stored as spectral library. Principal Component Analysis (PCA) and first derivative was applied to reduce the high dimensionality of the image and to determine the optimal wavelengths between 400 and 1000 nm. In total, 22 out of 144 wavelengths were selected by analysing the loadings of principal components (PC). SVM was used to develop the classification model. SVM model established on the whole spectrum from 400 to 1000 nm achieved an accuracy of 81.11%, whereas an accuracy of 77.17% with less computational load was achieved when SVM model was established on the optimal wavelengths selected. The results of the study demonstrate that the hyperspectral imaging system along with SVM is a promising tool for trace detection of explosives.


Plant Disease ◽  
2021 ◽  
Author(s):  
Mariam Barro ◽  
Abalo Itolou Kassankogno ◽  
Issa Wonni ◽  
Drissa SEREME ◽  
Irénée SOMDA ◽  
...  

Multiple constraints affect rice yields and global production in West Africa. Among these constraints are viral, bacterial and fungal pathogens. We aimed to describe the spatiotemporal patterns of occurrence and incidence of multiple rice diseases in farmers’ fields in contrasting rice growing systems in western Burkina Faso. For this purpose, we selected a set of three pairs of sites, each comprising an irrigated area and a neighboring rainfed lowland, and studied them over four consecutive years. We first performed interviews with the rice farmers to better characterize the management practices at the different sites. This study revealed that the transplanting of rice and the possibility of growing rice twice a year are restricted to irrigated areas, while other practices, such as the use of registered rice cultivars, fertilization and pesticides, are not specific but differ between the two rice growing systems. Then, we performed symptom observations at these study sites to monitor the following four diseases: yellow mottle disease, Bacterial Leaf Streak (BLS), rice leaf blast and brown spot. The infection rates were found to be higher in irrigated areas than in rainfed lowlands, both when analyzing all observed symptoms together (any of the four diseases) and when specifically considering each of the two diseases: BLS and rice leaf blast. Brown spot was particularly prevalent in all six study sites, while yellow mottle disease was particularly structured geographically. Various diseases were frequently found together in the same field (co-occurrence) or even on the same plant (coinfection), especially in irrigated areas.


2021 ◽  
Vol 13 (19) ◽  
pp. 3902
Author(s):  
Na Ta ◽  
Qingrui Chang ◽  
Youming Zhang

Leaf chlorophyll content (LCC) is one of the most important factors affecting photosynthetic capacity and nitrogen status, both of which influence crop harvest. However, the development of rapid and nondestructive methods for leaf chlorophyll estimation is a topic of much interest. Hence, this study explored the use of the machine learning approach to enhance the estimation of leaf chlorophyll from spectral reflectance data. The objective of this study was to evaluate four different approaches for estimating the LCC of apple tree leaves at five growth stages (the 1st, 2nd, 3rd, 4th and 5th growth stages): (1) univariate linear regression (ULR); (2) multivariate linear regression (MLR); (3) support vector regression (SVR); and (4) random forest (RF) regression. Samples were collected from the leaves on the eastern, western, southern and northern sides of apple trees five times (1st, 2nd, 3rd, 4th and 5th growth stages) over three consecutive years (2016–2018), and experiments were conducted in 10–20-year-old apple tree orchards. Correlation analysis results showed that LCC and ST, LCC and vegetation indices (VIs), and LCC and three edge parameters (TEP) had high correlations with the first-order differential spectrum (FODS) (0.86), leaf chlorophyll index (LCI) (0.87), and (SDr − SDb)/ (SDr + SDb) (0.88) at the 3rd, 3rd, and 4th growth stages, respectively. The prediction models of different growth stages were relatively good. The MLR and SVR models in the LCC assessment of different growth stages only reached the highest R2 values of 0.79 and 0.82, and the lowest RMSEs were 2.27 and 2.02, respectively. However, the RF model evaluation was significantly better than above models. The R2 value was greater than 0.94 and RMSE was less than 1.37 at different growth stages. The prediction accuracy of the 1st growth stage (R2 = 0.96, RMSE = 0.95) was best with the RF model. This result could provide a theoretical basis for orchard management. In the future, more models based on machine learning techniques should be developed using the growth information and physiological parameters of orchards that provide technical support for intelligent orchard management.


2013 ◽  
Vol 38 (5) ◽  
pp. 387-397 ◽  
Author(s):  
Ana P.A. Sena ◽  
Amanda A. Chaibub ◽  
Márcio V.C.B. Côrtes ◽  
Gisele B. Silva ◽  
Valácia L. Silva-Lobo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document