Exosomal miR-143-3p Derived from PCOS Follicular Fluid Induces Granulosa Cell Apoptosis by Targeting BMPR1A and Suppression of Smad1/5/8 Signaling

Author(s):  
Yuanyuan Zhao ◽  
Shuhong Pan ◽  
Yunying Li ◽  
Xiaohua Wu

Abstract Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorders disease in women of reproductive age. The anovulation caused by abnormal follicular development is still the main characteristic of infertile patients with PCOS. Granulosa cells (GCs), an important component of follicular microenvironment, affect follicular development through GCs dysfunction. Increasing evidence indicates that exosomal miRNAs derived from follicular fluid (FF) of patients play critical roles during PCOS. However, which and how follicular fluid derived exosomal miRNAs play a pivotal role in controlling granulosa cells function and consequently follicular development remain largely unknown. Herein, we showed that miR-143-3p is highly expressed in follicular fluid exosomes of PCOS patients and can be delivered into granulosa cells. Furthermore, the functional experiments showed that the translocated miR-143-3p promoted granulosa cell apoptosis, which are important in follicle development. In terms of mechanism, we demonstrated that BMPR1A was identified as a direct target of miR-143-3p. Overexpression of BMPR1A reversed the effects of exosomal miR-143-3p on GCs apoptosis and proliferation by activating Smad1/5/8 signaling pathway. These results demonstrate that miR-143-3p-containing exosomes derived from PCOS follicular fluid promoted granulosa cell apoptosis by targeting BMPR1A and blockading Smad1/5/8 signaling pathway. Our findings provide a novel mechanism underlying the roles of exosomal-miRNA in follicular fluid of PCOS and facilitate the development of therapeutic strategies for PCOS.

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Chenye Wang ◽  
Caifei Ding ◽  
Zhoujia Hua ◽  
Chunyue Chen ◽  
Jia Yu

Polycystic ovary syndrome (PCOS) is the most common endocrine and metabolic disorder prevalent in females of reproductive age; insulin resistance (IR) is the major pathogenic driver. Pharmacology is a basic option for PCOS therapy; traditional Chinese medicine (TCM), as a significant part of complementary and alternative medicine, has a long history in the clinical management of PCOS. Cangfudaotan decoction (CFD) has been used clinically for gynaecological diseases especially PCOS. In this study, first, chemical components in CFD were clarified using UPLC-Q/TOF-MS analysis. Then, an animal model of PCOS was established, granular cells were also isolated from the rats with PCOS, and CFD was administrated at different dosages in PCOS rats and granular cells, to investigate the therapeutic effect and mechanisms of CFD for PCOS treatment. The result showed that CFD treatment is effective in PCOS rats and granulosa cells. CFD was able to improve IR, restore the serum hormone levels, inhibit the inflammatory cytokines in PCOS rat, and alleviate ovary morphological injury and apoptosis in PCOS rats. In granulosa cells of PCOS, the result showed that the cell viability was improved, and cell apoptosis was inhibited after CFD administration. Further experiments suggested that CDF improves IR, follicular development, cell apoptosis, and inflammatory microenvironment, and this was associated to the regulation of IGF-1-PI3K/Akt-Bax/Bcl-2 pathway-mediated gene expression. Given that CFD sufficiently suppresses insulin resistance and improves follicular development in this study, exploring these mechanisms might help to optimize the therapeutic treatment of CFD in PCOS patients.


Zygote ◽  
1996 ◽  
Vol 4 (04) ◽  
pp. 317-321 ◽  
Author(s):  
Barbara C. Vanderhyden

Investigations of strains of mice defective in germ cell development have revealed the importance of oocytes for the initial stages of folliculogenesis (Pellaset al., 1991; Huanget al., 1993). Various aspects of follicular development are dependent upon and/or influenced by the presence of oocytes, including granulosa cell proliferation (Vanderhydenet al., 1990, 1992) and cumulus expansion (Buccioneet al., 1990; Salustriet al., 1990; Vanderhydenet al., 1990; Vanderhyden, 1993). We are investigating the possibility that oocytes influence one of the primary functions of granulosa cells: steroidogenesis. In many species, granulosa cells removed from preovulatory follicles luteinisein vitro(Channinget al., 1982), presumably due to loss of contact with follicular luteinisation inhibitory factor(s). Indeed, follicular fluid can prevent granulosa cell luteinisationin vitro(Ledwitz-Rigbyet al., 1977). Follicular fluid, however, may simply be the medium for transport of factors secreted by oocytes to regulate granulosa cell activities.


2021 ◽  
Author(s):  
Yaping Jiang ◽  
Rui Jiang ◽  
Peng Zhang ◽  
qiong Yu ◽  
Hongping Ba ◽  
...  

Abstract Purpose To investigate the changes of human granulosa cell, TNFR1, TNFR2 and their downstream molecules in patients with polycystic ovary syndrome (PCOS) and the control group. Methods We recruited infertile women with polycystic ovary syndrome (n = 30) and compared them with infertility due to fallopian tube obstruction(n = 30, control group). The ovaries were stimulated with GnRH agonists and gonadotropins. Follicular fluid from large follicles ([14 mm]) was pooled and granulosa cells (GCs) were separated by a cellular filter. The TNF-α level of follicular fluid was measured by ELISA. TUNEL assay were used to detect the apoptosis of purified GCs. Real-time PCR and Western blotting were used to detect the expression of TNF-related signaling molecules in GCs. Results The rate of high quality embryos in the PCOS group was lower than that in the control group. There were higher percentages of apoptosis in GCs of PCOS patients than in the control group. TNF-α is upregulated in follicular fluid of PCOS patients. TNFR1 and caspase-3 mRNA level were signifificantly higher in PCOS group than in the control group. TNF-α-mediated apoptosis of PCOS granulosa cells was mainly dependent on TNFR1.The TNF-α/TNFR1 signaling pathway mediates apoptosis rather than survival in cumulus cells of PCOS patients. Conclusions TNF-α expression was upregulated in follicular fluid of PCOS patients, and TNFR1 overexpression in female granulosa cells of PCOS was associated with higher levels of apoptosis in these cells, suggesting that the TNF-α/TNFR1 signaling pathway may be a candidate for higher apoptosis in female granulosa cells of PCOS.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Jingran Zhen ◽  
Jiangli Li ◽  
Xia Li ◽  
Xue Wang ◽  
Yaling Xiao ◽  
...  

Abstract Objective Researchers have revealed the combined functions of long noncoding RNAs (lncRNAs) and microRNA (miRNAs) in polycystic ovary syndrome (PCOS). This study aimed to understand the role of nuclear-enriched abundant transcript 1 (NEAT1) and miR-381 involving insulin-like growth factor 1 (IGF1) in PCOS. Methods PCOS rat model was established by dehydroepiandrosterone induction. NEAT1, miR-381 and IGF1 expression in ovarian granulosa cells of PCOS patients and ovarian tissues of PCOS rats were tested. Bioinformatics website and dual luciferase reporter gene assay were utilized to verify the relationship between NEAT1 and miR-381 and that between miR-381 and IGF1. Levels of sex hormone, pathological changes and ovarian granulosa cell apoptosis in ovarian tissues of PCOS rats were detected. Ovarian granulosa cell proliferation and apoptosis were analyzed in vitro. Results NEAT1 and IGF1 expression increased while miR-381 expression decreased in the ovarian granulosa cells of patients with PCOS and the ovarian tissues of PCOS rats. In in vivo experiments, interference with NEAT1 improved the levels of sex hormones, alleviated pathological changes and suppressed ovarian granulosa cell apoptosis in the ovarian tissues of PCOS rats. In in vitro cell experiments, interference with NEAT1 suppressed apoptosis and enhanced cell proliferation of ovarian granulosa cells. NEAT1 interference-mediated effect would be reversed by up-regulating miR-381. NEAT1 acted as a ceRNA to adsorb miR-381 to target IGF1. Overexpression of IGF1 reversed the inhibitory effect of miR-381 on ovarian granulosa cell apoptosis. Conclusion Interference with NEAT1 increases miR-381 and reduces IGF1 levels, effectively improving the levels of sex hormones and reducing the pathological damage of ovarian tissue in rats with PCOS.


2008 ◽  
Vol 93 (3) ◽  
pp. 881-887 ◽  
Author(s):  
M. Das ◽  
O. Djahanbakhch ◽  
B. Hacihanefioglu ◽  
E. Saridogan ◽  
M. Ikram ◽  
...  

Abstract Context: Polycystic ovary syndrome (PCOS) represents the most common endocrine abnormality in women of reproductive age. The cause of PCOS remains largely unknown, but studies suggest an intrinsic ovarian abnormality. Objective: The objective of the study was to test our hypothesis that differences in granulosa cell proliferation and apoptosis may underlie abnormalities that affect follicular development. Design: Granulosa cells were prepared from follicular fluid aspirated from 4- to 8-mm follicles of unstimulated ovaries during routine laparoscopy or laparotomy from women with anovulatory PCOS and those with regular ovulatory cycles. Setting: The study was conducted at a university hospital. Patients: Fourteen women with anovulatory PCOS and nine women with regular ovulatory cycles participated in the study. Main Outcome Measures: Immunocytochemistry on granulosa cells to investigate apoptotic and proliferation rates, together with real-time RT-PCR to analyze gene expression profiles of apoptotic regulators, was measured. Results: Significantly lower apoptotic rates were found in granulosa cells from patients with PCOS, compared with women with regular ovulatory cycles (P = 0.004). Lower apoptotic rates were associated with decreased levels of the apoptotic effector caspase-3 (P = 0.001) and increased levels of the anti-apoptotic survival factor cellular inhibitor of apoptosis proteins-2 in the PCOS group that were coupled to higher proliferation rates (P = 0.032). Gene expression profiling confirmed the immunocytochemical findings. Conclusions: Our findings indicate that there are significant differences in the rate of cell death and proliferation in granulosa cell populations in PCOS patients. These are associated with decreased expression of apoptotic effectors and increased expression of a cell survival factor. These results provide new insights that may be useful in developing specific therapeutic intervention strategies in PCOS.


2020 ◽  
Author(s):  
Guidong Yao ◽  
Yue Kong ◽  
Guang Yang ◽  
Deqi Kong ◽  
Yijiang Xu ◽  
...  

Abstract Backgrounds: Long non-coding RNA is a kind of RNA molecule with a transcript length of more than 200 nt and lacking protein coding ability. Recent studies have found that it is widely involved in many pathological and physiological processes. In our previous study, we found that lnc-GULP1-2:1 was significantly down-regulated in the ovarian cortical tissue of patients with primary ovarian insufficiency and predicted that lnc-GULP1-2:1 has a regulatory effect on COL3A1. Results: In this study, we found that lnc-GULP1-2:1 was mainly localized in the cytoplasm of luteinized granulosa cells and was lower expressed in patients with diminished ovarian reserve but highly expressed in patients with polycystic ovary syndrome. Overexpression of lnc-GULP1-2:1 in KGN cells significantly inhibited cell proliferation, which may be related to the regulation of cell cycle related genes CCND2 and p16. To further investigate the regulation of lnc-GULP1-2:1 on COL3A1, RNA analysis revealed a positive correlation between the expression of lnc-GULP1-2:1 and COL3A1 in multiple cell lines, and this was consistent in luteinized granulosa cells from patients with different ovarian functions. We also found that overexpression of lnc-GULP1-2:1 in KGN cells promoted the expression and migration of COL3A1 into the nucleus. Silencing COL3A1 gene in KGN cells also significantly inhibited cell proliferation, which may be related to the regulation of CCND2 gene expression. Conclusions: This study demonstrates that lnc-GULP1-2:1 may participate in the regulation of granulosa cell proliferation by regulating the expression and localization of COL3A1 protein, which will provide a new idea for understanding the regulatory mechanism of follicular development and a new strategy for the diagnosis and treatment of diseases related to follicular development disorders in the future.


Reproduction ◽  
2014 ◽  
Vol 147 (1) ◽  
pp. 73-80 ◽  
Author(s):  
JongYeob Choi ◽  
MinWha Jo ◽  
EunYoung Lee ◽  
DooSeok Choi

In this study, we examined whether granulosa cell autophagy during follicular development and atresia was regulated by the class I phosphoinositide-3 kinase/protein kinase B (AKT) pathway, which is known to control the activity of mammalian target of rapamycin (mTOR), a major negative regulator of autophagy. Ovaries and granulosa cells were obtained using an established gonadotropin-primed immature rat model that induces follicular development and atresia. Autophagy was evaluated by measuring the expression level of microtubule-associated protein light chain 3-II (LC3-II) using western blots and immunohistochemistry. The activity of AKT and mTOR was also examined by observing the phosphorylation of AKT and ribosomal protein S6 kinase (S6K) respectively. After gonadotropin injection, LC3-II expression was suppressed and phosphorylation of AKT and S6K increased in rat granulosa cells. By contrast, gonadotropin withdrawal by metabolic clearance promoted LC3-II expression and decreased phosphorylation of AKT and S6K. In addition,in-vitroFSH treatment of rat granulosa cells also indicated inhibition of LC3-II expression accompanied by a marked increase in phosphorylation of AKT and S6K. Inhibition of AKT phosphorylation using AKT inhibitor VIII suppressed FSH-mediated phosphorylation of S6K, followed by an increase in LC3-II expression. Furthermore, co-treatment with FSH and AKT inhibitor increased the levels of apoptosis and cell death of granulosa cells compared with the single treatment with FSH. Taken together, our findings indicated that AKT-mediated activation of mTOR suppresses granulosa cell autophagy during follicular development and is involved in the regulation of apoptotic cell death.


Sign in / Sign up

Export Citation Format

Share Document