scholarly journals Optimization of The Energy Efficiency in Smart Internet of Vehicles Assisted By MEC

Author(s):  
Jiafei Fu ◽  
Pengcheng Zhu ◽  
Jingyu Hua ◽  
Jiamin Li ◽  
Jiangang Wen

Abstract Smart Internet of Vehicles (IoV) as a promising application in Internet of Things (IoT) emerges with the development of the fifth generation mobile communication (5G). Nevertheless, the heterogeneous requirements of sufficient battery capacity, powerful computing ability and energy efficiency for electric vehicles face great challenges due to the explosive data growth in 5G and the sixth generation of mobile communication (6G) networks. In order to alleviate the deficiencies mentioned above, this paper proposes a mobile edge computing (MEC) enabled IoV system, in which electric vehicle nodes (eVNs) upload and download data through an anchor node (AN) which is integrated with a MEC server. Meanwhile, the anchor node transmitters radio signal to electric vehicles with simultaneous wireless information and power transfer (SWIPT) technology so as to compensate the battery limitation of eletric vehicles. Moreover, the anchor node equips with full-duplex (FD) and multi-input and multi-output (MIMO) technologies for futher improve the spectrum efficiency. Taking into account the issues above, we maximize the average energy efficiency of electric vehicles by jointly optimize the CPU frequency, vehicle transmitting power, computing tasks and uplink rate. In order to solve this nonconvex problem, we propose a novel alternate interior-point iterative scheme (AIIS) under the constraints of computing tasks, energy consumption and time latency. Numerical simulations demonstrate the effectiveness of the proposed scheme comparing with the benchmark schemes.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Hyunjin Joo ◽  
Yujin Lim

Electric vehicles (EVs) have recently attracted increasing research interest, on account of environmental issues and diminishing fuel reserves. EVs are environmentally friendly but have a short driving range. EVs must utilize energy efficiently, because they travel with limited energy. Conventional vehicle routing methods are not suitable for EVs, as they do not take energy consumption into account. This study introduces an energy efficient routing method using ant colony optimization (ER-ACO) to maximize the energy efficiency. We simulated ER-ACO and compared it with other ACO techniques, including the conventional routing method and other approaches for EVs. As a result, the proposed model improved the energy efficiency in terms of both the average distance per kW and average energy consumption.


2014 ◽  
Vol 8 (5) ◽  
pp. 723-732 ◽  
Author(s):  
Tetsushi Mimuro ◽  
◽  
Hiroyuki Takanashi ◽  

In recent years, numerous automobile manufacturers have been pursuing the development of Electric Vehicles (EVs) as a response to environmental problems such as global warming. Such EVs usually have shorter ranges than Internal Combustion Engine (ICE) vehicles because of their limited battery capacity. This problem is exacerbated in the winter, especially in cold districts, as the need for electricity to heat vehicle cabins results in drastic mileage reductions. One readily available solution to this problem is the use of Fuel-Operated Heaters (FOHs), and in this study we have performed field operation tests on such heaters retrofitted into mass-produced EVs. The pros and cons of FOH use with EVs will be discussed in comparison with Positive Temperature Coefficient (PTC) and heat pump heaters from the viewpoints of energy efficiency, carbon dioxide (CO2) emissions, heating performance, mileage influence, and usability.


2021 ◽  
Vol 11 (13) ◽  
pp. 6005
Author(s):  
Daniel Villanueva ◽  
Moisés Cordeiro-Costas ◽  
Andrés E. Feijóo-Lorenzo ◽  
Antonio Fernández-Otero ◽  
Edelmiro Miguez-García

The aim of this paper is to shed light on the question regarding whether the integration of an electric battery as a part of a domestic installation may increase its energy efficiency in comparison with a conventional case. When a battery is included in such an installation, two types of electrical conversion must be considered, i.e., AC/DC and DC/AC, and hence the corresponding losses due to these converters must not be forgotten when performing the analysis. The efficiency of the whole system can be increased if one of the mentioned converters is avoided or simply when its dimensioning is reduced. Possible ways to achieve this goal can be: to use electric vehicles as DC suppliers, the use of as many DC home devices as possible, and LED lighting or charging devices based on renewables. With all this in mind, several scenarios are proposed here in order to have a look at all possibilities concerning AC and DC powering. With the aim of checking these scenarios using real data, a case study is analyzed by operating with electricity consumption mean values.


2021 ◽  
Vol 11 (2) ◽  
pp. 716
Author(s):  
Ruibiao Chen ◽  
Fangxing Shu ◽  
Kai Lei ◽  
Jianping Wang ◽  
Liangjie Zhang

Non-orthogonal multiple access (NOMA) has been considered a promising technique for the fifth generation (5G) mobile communication networks because of its high spectrum efficiency. In NOMA, by using successive interference cancellation (SIC) techniques at the receivers, multiple users with different channel gain can be multiplexed together in the same subchannel for concurrent transmission in the same spectrum. The simultaneously multiple transmission achieves high system throughput in NOMA. However, it also leads to more energy consumption, limiting its application in many energy-constrained scenarios. As a result, the enhancement of energy efficiency becomes a critical issue in NOMA systems. This paper focuses on efficient user clustering strategy and power allocation design of downlink NOMA systems. The energy efficiency maximization of downlink NOMA systems is formulated as an NP-hard optimization problem under maximum transmission power, minimum data transmission rate requirement, and SIC requirement. For the approximate solution with much lower complexity, we first exploit a quick suboptimal clustering method to assign each user to a subchannel. Given the user clustering result, the optimal power allocation problem is solved in two steps. By employing the Lagrangian multiplier method with Karush–Kuhn–Tucker optimality conditions, the optimal power allocation is calculated for each subchannel. In addition, then, an inter-cluster dynamic programming model is further developed to achieve the overall maximum energy efficiency. The theoretical analysis and simulations show that the proposed schemes achieve a significant energy efficiency gain compared with existing methods.


Author(s):  
Xiuhua Fu ◽  
Tian Ding ◽  
Rongqun Peng ◽  
Cong Liu ◽  
Mohamed Cheriet

AbstractThis paper studies the communication problem between UAVs and cellular base stations in a 5G IoT scenario where multiple UAVs work together. We are dedicated to the uplink channel modeling and the performance analysis of the uplink transmission. In the channel model, we consider the impact of 3D distance and multi-UAVs reflection on wireless signal propagation. The 3D distance is used to calculate the path loss, which can better reflect the actual path loss. The power control factor is used to adjust the UAV's uplink transmit power to compensate for different propagation path losses, so as to achieve precise power control. This paper proposes a binary exponential power control algorithm suitable for 5G networked UAV transmitters and presents the entire power control process including the open-loop phase and the closed-loop phase. The effects of power control factors on coverage probability, spectrum efficiency and energy efficiency under different 3D distances are simulated and analyzed. The results show that the optimal power control factor can be found from the point of view of energy efficiency.


2020 ◽  
Vol 32 (1) ◽  
Author(s):  
Martin Weiss ◽  
Kira Christina Cloos ◽  
Eckard Helmers

Sign in / Sign up

Export Citation Format

Share Document