scholarly journals Efficient Editing of CSLD2 Orthologue by CRISPR/Cas9 Affects Cell Morphogenesis of Root Hair in Spinach

Author(s):  
Yingping Cao ◽  
Yue Xu ◽  
Yue Zhang ◽  
Heng Zhang ◽  
Chen Bai ◽  
...  

Abstract CRISPR/Cas9 is a valuable tool and has been extensively employed to perform gene editing in plants. However, CRISPR/Cas9 has not been successfully used in spinach, an important leafy vegetable crop. Here, we precisely edited Spo23361 and Spo10340, two cellulose synthase-like D (CSLD) genes involved in root hair formation of spinach hairy roots, using CRISPR/Cas9 system. Four mutation types (i.e., replacement, insertion, deletion, and combined mutations) were observed, among which the deletion accounted for the vast majority (about 64.1%). Mutation rate differed largely among different targets. Seven homozygous/bi-allelic and eight heterozygous/chimeric mutated lines of Spo23361 were obtained from 15 independent transgenic hairy root lines. All of the seven homozygous/bi-allelic lines displayed bulking and short root hairs, which exhibited the characteristics of Arabidopsis csld2 mutants. Thirteen heterozygous/chimeric mutated lines, but no homozygous/bi-allelic lines, of Spo10340 were obtained from 15 independent transgenic hairy root lines, all of which showed similar phenotype of root hair with normal hairy roots. The transcriptomic analysis further revealed that multiple gene expressions for cell wall modulation and membrane trafficking were disturbed, which might result in the inhibition of root hair growth in Spo23361 mutants. Our results indicate that Agrobacterium rhizogenes-mediated transformation using CRISPR/Cas9 is a simple and efficient genome editing tool in spinach. It lays a solid foundation for large-scale genome editing in spinach in future.

2021 ◽  
Author(s):  
Lenka Kuběnová ◽  
Michaela Tichá ◽  
Jozef Šamaj ◽  
Miroslav Ovečka

AbstractArabidopsis root hairs develop as long tubular extensions from the rootward pole of trichoblasts and exert polarized tip growth. The establishment and maintenance of root hair polarity is a complex process involving the local apical production of reactive oxygen species (ROS) generated by NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG PROTEIN C/ROOT HAIR DEFECTIVE 2 (AtRBOHC/RHD2). It has been shown that loss-of-function rhd2 mutants have short root hairs that are unable to elongate by tip growth, and this phenotype was fully complemented by GFP-RHD2 expressed under the RHD2 promoter. However, the spatiotemporal mechanism of AtRBOHC/RHD2 subcellular redistribution and delivery to the plasma membrane (PM) during root hair initiation and tip growth are still unclear. Here, we used advanced microscopy for detailed qualitative and quantitative analysis of vesicular compartments containing GFP-RHD2 and characterization of their movements in developing bulges and growing root hairs. These compartments, identified by an independent marker such as the trans-Golgi network (TGN), deliver GFP-RHD2 to the apical PM domain, the extent of which correlates with the stage of root hair formation. Movements of TGN/early endosomes, but not late endosomes, were affected in the bulging domains of the rhd2-1 mutant. Finally, we reveal that accumulation in the growing tip, docking, and incorporation of TGN compartments containing GFP-RHD2 to the apical PM of root hairs requires structural sterols. These results help clarify the mechanism of polarized AtRBOHC/RHD2 targeting, maintenance, and recycling at the apical PM domain, coordinated with different developmental stages of root hair initiation and growth.One-sentence summaryAdvanced microscopy and quantitative analysis of vesicular TGN compartments revealed that delivering GFP-RHD2 to the apical plasma membrane domains of developing bulges and growing root hairs requires structural sterols.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1170
Author(s):  
Chrysanthi Foti ◽  
Ourania Pavli

Previous efforts to transform lentil have been considerably hampered by the crop’s recalcitrant nature, giving rise to particularly low transformation and regeneration frequencies. This study aimed at optimizing an Agrobacterium rhizogenes-mediated transformation protocol for the generation of composite lentil plantlets, comprised of transgenic hairy roots and wild-type shoots. Transformation was performed by inoculating the cut hypocotyl of young lentil seedlings, while optimization involved the use of different bacterial strains, namely R1000, K599 and Arqua, and protocols differing in media composition with respect to the presence of acetosyringone and MES. Composite plantlets had a transgenic hairy root system characterized by an increased number of hairy roots at the hypocotyl proximal region, occasionally showing plagiotropic growth. Overall findings underline that transformation frequencies are subject to the bacterial strain, media composition as well as their combined effect. Among strains tested, R1000 proved to be the most capable of hairy root formation, while the presence of both acetosyringone and MES in inoculation and culture media yielded considerably higher transformation rates. The transgenic nature of hairy roots was demonstrated by the Ri T-DNA-mediated transfer of the rolB2 gene and the simultaneous absence of the virCD sequence of A. rhizogenes. Our findings provide strong evidence that A. rhizogenes-mediated transformation may be employed as a suitable approach for generating composite seedlings in lentil, a species whose recalcitrance severely hampers all efforts addressed to transformation and whole plant regeneration procedures. To the best of our knowledge, this is the first report on the development of a non-laborious and time-efficient protocol for the generation of transgenic hairy roots in lentil, thus providing an amenable platform for root biology and gene expression studies in the context of improving traits related to biotic and abiotic stress tolerance.


2020 ◽  
Author(s):  
Sabrina Chin ◽  
Taegun Kwon ◽  
Bibi Rafeiza Khan ◽  
J. Alan Sparks ◽  
Eileen L. Mallery ◽  
...  

AbstractRoot hairs are single cell protrusions that enable roots to optimize nutrient and water acquisition. They attain their tubular shapes by confining growth to the cell apex, a process called tip growth. The actin cytoskeleton and endomembrane system are essential for tip growth; however, little is known about how these cellular components coordinate their activities during this process. Here, we show that SPIRRIG (SPI), a BEACH domain-containing protein involved in membrane trafficking, and BRK1 and SCAR2, subunits of the WAVE/SCAR (W/SCR) and actin related protein (ARP)2/3 activation complexes, display polarized localizations to root hairs at distinct developmental stages. SPI accumulates at the root hair apex via post-Golgi vesicles and positively regulates tip growth by maintaining tip-focused vesicle secretion and filamentous-actin integrity. BRK1 and SCAR2 on the other hand, mark the root hair initiation domain to specify the position of root hair emergence. Live cell microscopy revealed that BRK1 depletion coincided with SPI accumulation as root hairs transitioned from initiation to tip growth. Furthermore, double mutant studies showed that SPI genetically interacts with BRK1 and ARP2/3. Taken together, our work uncovers a role for SPI in facilitating actin-dependent root hair development through pathways that intersect with the W/SCR and ARP2/3 complexes.


2018 ◽  
Vol 15 (4) ◽  
pp. 641-650
Author(s):  
Duong Tan Nhut ◽  
Nguyen Phuc Huy ◽  
Trinh Thi Huong ◽  
Vu Quoc Luan ◽  
Vu Thi Hien ◽  
...  

In recent years, the Agrobacterium-mediated genetic transformation system has become the most useful method widely used for the introduction of foreign genes into plant cells followed by regeneration of genetically improved plants. Panax vietnamensis Ha et Grushv. is a highly valued medicinal plant native to Vietnam with limited area of distribution. This report illustrates the possibilities of biotechnology for genetic transformation aimed at establishing an effective production of secondary metabolites in P. vietnamensis. In the present investigation, 0.5 cm2 leaf blades, 1 cm long leaf petioles and 0.5 cm3 callus clusters were used for the hairy root induction. Results indicated that hairy roots were induced on P. vietnamensis callus clusters co-cultivated with Agrobacterium rhizogenes strain ATCC15834 at OD600 of 0.5 with an infection time of 20 min and a supplementation of 100 mM acetosyringone. PCR amplification of the DNA isolated from the resulting hairy roots was used to confirm the presence of rol genes. Compared to in vitro rhizome cultures, hairy root cultures appear to be potential for continuous production of valuable secondary metabolites with similar saponin profiles. The protocol described in this study is simple and rapid and therefore, can be used for large-scale experiments for the rapid production of valuable compounds.


2021 ◽  
Author(s):  
Sabrina Chin ◽  
Taegun Kwon ◽  
Bibi Rafeiza Khan ◽  
J Alan Sparks ◽  
Eileen L Mallery ◽  
...  

Abstract Root hairs are single cell protrusions that enable roots to optimize nutrient and water acquisition. These structures attain their tubular shapes by confining growth to the cell apex, a process called tip growth. The actin cytoskeleton and endomembrane systems are essential for tip growth; however, little is known about how these cellular components coordinate their activities during this process. Here, we show that SPIRRIG (SPI), a BEACH domain-containing protein involved in membrane trafficking, and BRK1 and SCAR2, subunits of the WAVE/SCAR (W/SC) actin nucleating promoting complex, display polarized localizations in Arabidopsis thaliana root hairs during distinct developmental stages. SPI accumulates at the root hair apex via post-Golgi compartments and positively regulates tip growth by maintaining tip-focused vesicle secretion and filamentous-actin integrity. BRK1 and SCAR2 on the other hand, mark the root hair initiation domain to specify the position of root hair emergence. Consistent with the localization data, tip growth was reduced in spi and the position of root hair emergence was disrupted in brk1 and scar1234. BRK1 depletion coincided with SPI accumulation as root hairs transitioned from initiation to tip growth. Taken together, our work uncovers a role for SPI in facilitating actin-dependent root hair development in Arabidopsis through pathways that might intersect with W/SC.


2021 ◽  
Vol 19 (2) ◽  
pp. 349-358
Author(s):  
La Viet Hong ◽  
Nguyen Thu Giang ◽  
Le Hoang Duc ◽  
Pham Bich Ngoc ◽  
Chu Hoang Ha

Miraculin, a taste modifier, is a protein that was first isolated from miracle fruit (Richadella dulcifica). It can change a sour taste into a sweet taste when sour acids are consumed, although it does not elicit a sweet response. Miraculin may have the potential in industry as a substitute for sugars and as artificial sweeteners. Since the miracle plant has low fruit productivity, mass production of miraculin is limited. Transgenic hairy root culture is a potential alternative system for the mass production of miraculin. In this study, we investigated the expression of recombinant miraculin in tobacco (Nicotiana tabacum) hairy roots. To increase miraculin expression, the heat shock protein 18.2 promoter and terminator were used to drive the expression of miraculin gene in a potential host system. Synthetic miraculin gene was transformed into Nicotiana tobacum leaf explants via Agrobacterium rhizogenes. The transgenic hairy root clones that contained synthetic miraculin gene showed rapid growth and reached maximum growth after 35-day culture. When the expression of miraculin gene was regulated by heat shock protein 18.2 promoter and heat shock protein terminator, the expression of recombinant miraculin increased than the control regulated by CaMV 35S promoter and nopaline synthase terminator. The recombinant miraculin was 19.97 ng per µg of the total soluble protein and equivalently with approximately 2% of the total soluble protein. For the first time, a taste modifying miraculin was successfully expressed in tobacco hairy root. The results in this study have given a promising approach for the application of the transgenic hairy root system to produce recombinant miraculin.


2005 ◽  
Vol 168 (5) ◽  
pp. 801-812 ◽  
Author(s):  
Patrick Vincent ◽  
Michael Chua ◽  
Fabien Nogue ◽  
Ashley Fairbrother ◽  
Hal Mekeel ◽  
...  

Phosphatidylinositol (PtdIns) transfer proteins (PITPs) regulate signaling interfaces between lipid metabolism and membrane trafficking. Herein, we demonstrate that AtSfh1p, a member of a large and uncharacterized Arabidopsis thaliana Sec14p-nodulin domain family, is a PITP that regulates a specific stage in root hair development. AtSfh1p localizes along the root hair plasma membrane and is enriched in discrete plasma membrane domains and in the root hair tip cytoplasm. This localization pattern recapitulates that visualized for PtdIns(4,5)P2 in developing root hairs. Gene ablation experiments show AtSfh1p nullizygosity compromises polarized root hair expansion in a manner that coincides with loss of tip-directed PtdIns(4,5)P2, dispersal of secretory vesicles from the tip cytoplasm, loss of the tip f-actin network, and manifest disorganization of the root hair microtubule cytoskeleton. Derangement of tip-directed Ca2+ gradients is also apparent and results from isotropic influx of Ca2+ from the extracellular milieu. We propose AtSfh1p regulates intracellular and plasma membrane phosphoinositide polarity landmarks that focus membrane trafficking, Ca2+ signaling, and cytoskeleton functions to the growing root hair apex. We further suggest that Sec14p-nodulin domain proteins represent a family of regulators of polarized membrane growth in plants.


Author(s):  
K.S. Walters ◽  
R.D. Sjolund ◽  
K.C. Moore

Callose, B-1,3-glucan, a component of cell walls, is associated with phloem sieve plates, plasmodesmata, and other cell wall structures that are formed in response to wounding or infection. Callose reacts with aniline blue to form a fluorescent complex that can be recognized in the light microscope with ultraviolet illumination. We have identified callose in cell wall protuberances that are formed spontaneously in suspension-cultured cells of S. tortuosus and in the tips of root hairs formed in sterile callus cultures of S. tortuosus. Callose deposits in root hairs are restricted to root hair tips which appear to be damaged or deformed, while normal root hair tips lack callose deposits. The callose deposits found in suspension culture cells are restricted to regions where unusual outgrowths or protuberances are formed on the cell surfaces, specifically regions that are the sites of new cell wall formation.Callose formation has been shown to be regulated by intracellular calcium levels.


2020 ◽  
Vol 22 (1) ◽  
pp. 115-122
Author(s):  
Amarila Malik ◽  
Elita Yuliantie ◽  
Nisa Yulianti Suprahman ◽  
Theresa Linardi ◽  
Angelina Wening Widiyanti ◽  
...  

Background: Bacteriocins (Bac1, Bac2, and Bac3) from Weissella confusa MBF8-1, weissellicin- MBF, have been reported as potential alternative substances as well as complements to the existing antibiotics against many antimicrobial-resistant pathogens. Previously, the genes encoded in the large plasmid, pWcMBF8-1, and the spermicidal activity of their synthetic peptides, originally discovered Indonesia, have been studied. Three synthetic bacteriocins peptides of this weissellicin-MBF have been reported for their potential activities, i.e. antibacterial and spermicidal. Objective: The aim of this study was to construct the recombinant Bacteriocin (r-Bac) genes, as well as to investigate the gene expressions and their functional analysis. Method: Here, the recombinant Bacteriocin (r-Bac) genes were constructed and the recombinant peptides (r-Bac1, r-Bac2, and r-Bac3) in B. subtilis DB403 cells were produced on a large scale. After purification, using the His-tag affinity column, their potential bioactivities were measured as well as their antibacterial minimum inhibitory concentrations against Leuconostoc mesenteroides and Micrococcus luteus, were determined. Results: Pure His-tag-recombinant Bac1, Bac2, and Bac3 were obtained and they could inhibit the growth of L. mesenteroides and M. luteus. Conclusion: The recombinant bacteriocin could be obtained although with weak activity in inhibiting gram-positive bacterial growth.


2020 ◽  
Vol 71 (22) ◽  
pp. 6861-6864
Author(s):  
María A Pedreño ◽  
Lorena Almagro

This article comments on: Barba-Espín G, Chen S-T, Agnolet S, Hegelund JN, Stanstrup J, Christensen JH, Müller R, Lütken H. 2020. Ethephon-induced changes in antioxidants and phenolic compounds in anthocyanin-producing black carrot hairy root cultures. Journal of Experimental Botany 71, 7030–7045.


Sign in / Sign up

Export Citation Format

Share Document