scholarly journals FHL2 Regulates Proliferation Differentiation and Autophagy of Bovine Skeletal Muscle Satellite Cells Through Wnt/β-catenin Signaling Pathway

Author(s):  
Yun Zhu ◽  
Peng Li ◽  
Xingang Dan ◽  
Xingang Kang ◽  
Yun Ma ◽  
...  

Abstract The mechanism of physiological regulation of bovine skeletal muscle development is a complex process, and FHL2 has been studied in association with β-catenin activity and has previously been reported to play a role in skeletal muscle.However the mechanism of FHL2 action in regulating skeletal muscle development in bovine skeletal myosatellite is unclear. Here, we report that FHL2 can both promote the proliferation and differentiation of bovine myosatellite cells through the wnt signaling pathway and bovine skeletal muscle satellite cells through cellular autophagy. The results of western blotting, rt-qPCT, cell transfection assay showed that FHL2 gene expression was enhanced during the proliferation of skeletal muscle satellite cells, and FHL2 knockdown inhibited the proliferation and differentiation of bovine satellite cells and promoted the atrophy of myotubes. Furthermore, immunoprecipitation assays yielded that FHL2 knockdown decreased β-catenin activity in BMSCs and activated β-catenin-mediated wnt signaling pathway in combination with DVL-2, and that FHL2 knockdown induced autophagy in bovine satellite cells. Therefore, the FHL2 gene is a key gene in the regulation of bovine satellite cells.

Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 814
Author(s):  
Donghao Zhang ◽  
Jinshan Ran ◽  
Jingjing Li ◽  
Chunlin Yu ◽  
Zhifu Cui ◽  
...  

The proliferation and differentiation of skeletal muscle satellite cells (SMSCs) play an important role in the development of skeletal muscle. Our previous sequencing data showed that miR-21-5p is one of the most abundant miRNAs in chicken skeletal muscle. Therefore, in this study, the spatiotemporal expression of miR-21-5p and its effects on skeletal muscle development of chickens were explored using in vitro cultured SMSCs as a model. The results in this study showed that miR-21-5p was highly expressed in the skeletal muscle of chickens. The overexpression of miR-21-5p promoted the proliferation of SMSCs as evidenced by increased cell viability, increased cell number in the proliferative phase, and increased mRNA and protein expression of proliferation markers including PCNA, CDK2, and CCND1. Moreover, it was revealed that miR-21-5p promotes the formation of myotubes by modulating the expression of myogenic markers including MyoG, MyoD, and MyHC, whereas knockdown of miR-21-5p showed the opposite result. Gene prediction and dual fluorescence analysis confirmed that KLF3 was one of the direct target genes of miR-21-5p. We confirmed that, contrary to the function of miR-21-5p, KLF3 plays a negative role in the proliferation and differentiation of SMSCs. Si-KLF3 promotes cell number and proliferation activity, as well as the cell differentiation processes. Our results demonstrated that miR-21-5p promotes the proliferation and differentiation of SMSCs by targeting KLF3. Collectively, the results obtained in this study laid a foundation for exploring the mechanism through which miR-21-5p regulates SMSCs.


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 369 ◽  
Author(s):  
Xinao Cao ◽  
Shuyue Tang ◽  
Fei Du ◽  
Hao Li ◽  
Xiaoxu Shen ◽  
...  

Noncoding RNAs, especially microRNAs (miRNAs), have been reported to play important roles during skeletal muscle development and regeneration. Our previous sequencing data revealed that miR-99a-5p is one of the most abundant miRNAs in chicken breast muscle. The purpose of this study was to reveal the regulatory mechanism of miR-99a-5p in the proliferation and differentiation of chicken skeletal muscle satellite cells (SMSCs). Through the investigation of cell proliferation activity, cell cycle progression, and 5-ethynyl-29-deoxyuridine (EdU) assay, we found that miR-99a-5p can significantly promote the proliferation of SMSCs. Moreover, we found that miR-99a-5p can inhibit myotube formation by decreasing the expression of muscle cell differentiation marker genes. After miR-99a-5p target gene scanning, we confirmed that miR-99a-5p directly targets the 3′ untranslated region (UTR) of myotubularin-related protein 3 (MTMR3) and regulates its expression level during chicken SMSC proliferation and differentiation. We also explored the role of MTMR3 in muscle development and found that its knockdown significantly facilitates the proliferation but represses the differentiation of SMSCs, which is opposite to the effects of miR-99a-5p. Overall, we demonstrated that miR-99a-5p regulates the proliferation and differentiation of SMSCs by targeting MTMR3.


2020 ◽  
Vol 21 (15) ◽  
pp. 5573
Author(s):  
Huadong Yin ◽  
Jing Zhao ◽  
Haorong He ◽  
Yuqi Chen ◽  
Yan Wang ◽  
...  

MicroRNAs (miRNAs) are evolutionarily conserved, small noncoding RNAs that post-transcriptionally regulate expression of their target genes. Emerging evidence demonstrates that miRNAs are important regulators in the development of skeletal muscle satellite cells (SMSCs). Our previous research showed that gga-miR-3525 is differentially expressed in breast muscle of broilers (high growth rate) and layers (low growth rate). In this study, we report a new role for gga-miR-3525 as a myogenic miRNA that regulates skeletal muscle development in chickens. Exogenous increases in the expression of gga-miR-3525 significantly inhibited proliferation and differentiation of SMSCs, whereas the opposite effects were observed in gga-miR-3525 knockdown SMSCs. We confirmed that PDLIM3 (PDZ and LIM domain 3) is a target gene of gga-miR-3525 that can promote proliferation and differentiation of SMSCs. We found that PDLIM3 overexpression elevated the abundance of phosphorylated (p-)p38 protein but that the gga-miR-3525 mimic and p38-MAPK inhibitor (SB203580) weakened the activation of p-p38. Furthermore, treatment with SB203580 reduced the promoting effect of PDLIM3 on SMSC proliferation and differentiation. Overall, our results indicate that gga-miR-3525 regulates the proliferation and differentiation of SMSCs by targeting PDLIM3 via the p38/MAPK signaling pathway in chickens.


2020 ◽  
Author(s):  
Bismark Kyei ◽  
Li Li ◽  
Liu Yang ◽  
Siyuan Zhan ◽  
Juntao Li ◽  
...  

Abstract Background: Myogenesis is a complex process controlled by several coding and non-coding RNAs (ncRNAs) such as circular RNAs (circRNAs) that well-known function as endogenous microRNAs (miRNAs) sponges. Over the past few years, numerous circRNAs have been known and their roles in biological processes have begun to be understood. Cerebellar Degeneration-Related protein 1 antisense (CDR1as), the most spotlighted circRNA as miR-7 sponge that has been blooming circRNAs’ research for a decade, and can potentially sponge several miRNAs in disease and muscle physiology. Nevertheless, the linear-RNAs-differed character that the acute interventions for circRNAs do not affect miRNAs levels, and has retarded the transcriptome-wide discovery of miRNAs sponged by. Therefore, the purpose of this study was to provide the transcriptomic effect of CDR1as during muscle differentiation.Methods: siCDR1as and siDICER1 were transfected into goat skeletal muscle satellite cells (SMSCs). RNA-seq technology and bioinformatics tools were used to analyze genes that are deregulated by siCDR1as and siDICER1. quantitative PCR was used to verify the expression levels of the differentially expressed mRNAs and miRNAs. Results: Here, to systematically identify miRNAs targeting CDR1as, we employed the critical enzyme DICER1 that governs the biogenesis of miRNAs. The deficiency of either DICER1 or CDR1as inhibited myogenic differentiation of SMSCs, and knockdown of DICER1 decreased the expression of CDR1as. Moreover, we screened for the targeted messenger RNAs (mRNAs) and miRNAs in SMSCs transfected with siDICER1 or siCDR1as respectively and found out that some well-known muscle-related pathways such as phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, Rap1 signaling pathway, and MAPK signaling pathway were enriched in all groups. Further, regarding the miRNAs identified in siDICER1 and siCDR1as together with the sequence complementary information, we identified 11 miRNAs including miR-1, miR-206, and miR-27a-5p which are more likely to be novel targets for CDR1as. Conclusion: In summary, our study provides a perspective on the potential functions and relationship between CDR1as and DICER1 during muscle development.


Author(s):  
Yu Shi ◽  
Xudong Mao ◽  
Mingcheng Cai ◽  
Shenqiang Hu ◽  
Xiulan Lai ◽  
...  

Abstract Skeletal muscle satellite cells (SMSCs), also known as a multipotential stem cell population, play a crucial role during muscle growth and regeneration. In recent years, numerous miRNAs have been associated with the proliferation and differentiation of SMSCs in a number of mammalian species; however, the regulatory mechanisms of miR-194-5p in rabbit SMSCs still remain scarce. In this study, miR-194-5p was first observed to be highly expressed in the rabbit leg muscle. Furthermore, both the mimics and inhibitor of miR-194-5p were used to explore its role in the proliferation and differentiation of rabbit SMSCs cultured in vitro. Results from both EdU and CCK8 assays showed that miR-194-5p inhibited the proliferation of SMSCs. Meanwhile, Mef2c was identified as a target gene of miR-194-5p based on the dual-luciferase reporter assay results. In addition, upregulation of miR-194-5p decreased the expression levels of Mef2c and MyoG during rabbit SMSCs differentiation on Days 3 and 7 of in vitro culture. Taken together, these data demonstrated that miR-194-5p negatively regulates the proliferation and differentiation of rabbit SMSCs by targeting Mef2c.


Animals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 84 ◽  
Author(s):  
Jing Zhao ◽  
Xiaoxu Shen ◽  
Xinao Cao ◽  
Haorong He ◽  
Shunshun Han ◽  
...  

The development of skeletal muscle satellite cells (SMSCs) is a complex process that could be regulated by many genes. Previous studies have shown that Histone Deacetylase 4 (HDAC4) plays a critical role in cell proliferation, differentiation, and apoptosis in mouse. However, the function of HDAC4 in chicken muscle development is still unknown. Given that chicken is a very important meat-producing animal that is also an ideal model to study skeletal muscle development, we explored the functions of HDAC4 in chicken SMSCs after the interference of HDAC4. The results showed that HDAC4 was enriched in embryonic skeletal muscle, and it was highly expressed in embryonic muscle than in postnatal muscles. Meanwhile, knockdown of HDAC4 could significantly inhibit the proliferation and differentiation of chicken SMSCs but had no effect on the apoptosis of SMSCs as observed in a series of experiment conducted in vitro. These results indicated that HDAC4 might play a positive role in chicken skeletal muscle growth and development.


Sign in / Sign up

Export Citation Format

Share Document