scholarly journals Functional Identification of MicroRNA-Centered Complexes in C. Elegans.

Author(s):  
Shilpa Hebbar ◽  
Ganesh Panzade ◽  
Ajay Vashisht ◽  
James Wohlschlegel ◽  
Isana Veksler-Lublinsky ◽  
...  

Abstract microRNAs (miRNAs) are crucial for normal development and physiology. To identify factors that might coordinate with miRNAs to regulate gene expression, we used 2’-O methylated oligonucleotides to precipitate Caenorhabditis elegans let-7, miR-58, and miR-2 miRNAs and the associated proteins. A total of 211 proteins were identified through mass-spectrometry analysis of miRNA co-precipitates, which included previously identified interactors of key miRNA pathway components. Gene ontology analysis of the identified interactors revealed an enrichment for RNA binding proteins, suggesting that we captured proteins that may be involved in mRNA lifecycle. To determine which miRNA interactors are important for miRNA activity, we used RNAi to deplete putative miRNA co-factors in animals with compromised miRNA activity and looked for alterations of the miRNA mutant phenotypes. Depletion of 25 of 39 tested genes modified the miRNA mutant phenotypes in three sensitized backgrounds. Modulators of miRNA phenotypes ranged from RNA binding proteins RBD-1 and CEY-1 to metabolic factors such as DLST-1 and ECH-5, among others. The observed functional interactions suggest widespread coordination of these proteins with miRNAs to ultimately regulate gene expression. This study provides a foundation for future investigations aimed at deciphering the molecular mechanisms of miRNA-mediated gene regulation.

2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Dustin Haskell ◽  
Anna Zinovyeva

Abstract MicroRNAs (miRNAs) and RNA-binding proteins (RBPs) regulate gene expression at the post-transcriptional level, but the extent to which these key regulators of gene expression coordinate their activities and the precise mechanisms of this coordination are not well understood. RBPs often have recognizable RNA binding domains that correlate with specific protein function. Recently, several RBPs containing K homology (KH) RNA binding domains were shown to work with miRNAs to regulate gene expression, raising the possibility that KH domains may be important for coordinating with miRNA pathways in gene expression regulation. To ascertain whether additional KH domain proteins functionally interact with miRNAs during Caenorhabditis elegans development, we knocked down twenty-four genes encoding KH-domain proteins in several miRNA sensitized genetic backgrounds. Here, we report that a majority of the KH domain-containing genes genetically interact with multiple miRNAs and Argonaute alg-1. Interestingly, two KH domain genes, predicted splicing factors sfa-1 and asd-2, genetically interacted with all of the miRNA mutants tested, whereas other KH domain genes showed genetic interactions only with specific miRNAs. Our domain architecture and phylogenetic relationship analyses of the C. elegans KH domain-containing proteins revealed potential groups that may share both structure and function. Collectively, we show that many C. elegans KH domain RBPs functionally interact with miRNAs, suggesting direct or indirect coordination between these two classes of post-transcriptional gene expression regulators.


2020 ◽  
Author(s):  
D Haskell ◽  
A Zinovyeva

ABSTRACTmicroRNAs (miRNAs) and RNA binding proteins (RBPs) regulate gene expression at the post-transcriptional level, but the extent to which these key regulators of gene expression coordinate and the precise mechanisms of their coordination are not well understood. RNA binding proteins often have recognizable RNA binding domains that correlate with specific protein function. Recently, several RBPs containing K Homology (KH) RNA binding domains were shown to work with miRNAs to regulate gene expression, raising the possibility that KH domains may be important for coordinating with miRNA pathways in gene expression regulation. To ascertain whether additional KH domain proteins functionally interact with miRNAs during Caenorhabditis elegans development, we knocked down twenty-four genes encoding KH-domain proteins in several miRNA sensitized genetic backgrounds. Here, we report that a majority of the KH domain-containing genes genetically interact with multiple miRNAs and Argonaute alg-1. Interestingly, two KH domain genes, predicted splicing factors sfa-1 and asd-2, genetically interacted with all of the miRNA mutants tested, while other KH domain genes exhibited functional interactions only with specific miRNAs. Our domain architecture and phylogenetic relationship analyses of the C. elegans KH domain-containing proteins revealed potential groups that may share both structure and function. Collectively, we show that many C. elegans KH domain RBPs functionally interact with miRNAs, suggesting direct or indirect coordination between these two classes of post-transcriptional gene expression regulators.


Author(s):  
Nicole J. Curtis ◽  
Constance J. Jeffery

RNA binding proteins play key roles in many aspects of RNA metabolism and function, including splicing, transport, translation, localization, stability and degradation. Within the past few years, proteomics studies have identified dozens of enzymes in intermediary metabolism that bind to RNA. The wide occurrence and conservation of RNA binding ability across distant branches of the evolutionary tree suggest that these moonlighting enzymes are involved in connections between intermediary metabolism and gene expression that comprise far more extensive regulatory networks than previously thought. There are many outstanding questions about the molecular structures and mechanisms involved, the effects of these interactions on enzyme and RNA functions, and the factors that regulate the interactions. The effects on RNA function are likely to be wider than regulation of translation, and some enzyme–RNA interactions have been found to regulate the enzyme's catalytic activity. Several enzyme–RNA interactions have been shown to be affected by cellular factors that change under different intracellular and environmental conditions, including concentrations of substrates and cofactors. Understanding the molecular mechanisms involved in the interactions between the enzymes and RNA, the factors involved in regulation, and the effects of the enzyme–RNA interactions on both the enzyme and RNA functions will lead to a better understanding of the role of the many newly identified enzyme–RNA interactions in connecting intermediary metabolism and gene expression.


2021 ◽  
Vol 21 ◽  
Author(s):  
Jiamao Chen ◽  
Qian Zhang ◽  
Ting Liu ◽  
Hua Tang

: Hepatocellular carcinoma (HCC) is the sixth globally diagnosed cancer with a poor prognosis. Although the pathological factors of hepatocellular carcinoma are well elucidated, the underlying molecular mechanisms remain unclear. N6-methyladenosine (m6A) is an adenosine methylation occurring at the N6 site, which is the most prevalent modification of eukaryotic mRNA. Recent studies have shown that m6A can regulate gene expression, thus modulating the processes of cell self-renewal, differentiation, and apoptosis. The methyls in m6A are installed by methyltransferases (“writers”), removed by demethylases (“erasers”) and recognized by m6A-binding proteins (“readers”). In this review, we discuss the roles of above regulators in the progression and prognosis of HCC, and summarize the clinical association between m6A modification and hepatocellular carcinoma, so as to provide more valuable information for clinical treatment.


2019 ◽  
Author(s):  
Li Li ◽  
Isana Veksler-Lublinsky ◽  
Anna Y. Zinovyeva

AbstractmicroRNAs (miRNAs) are potent regulators of gene expression that function in diverse developmental and physiological processes. Argonaute proteins loaded with miRNAs form the miRNA Induced Silencing Complexes (miRISCs) that repress gene expression at the post-transcriptional level. miRISCs target genes through partial sequence complementarity between the miRNA and the target mRNA’s 3’ UTR. In addition to being targeted by miRNAs, these mRNAs are also extensively regulated by RNA-binding proteins (RBPs) through RNA processing, transport, stability, and translation regulation. While the degree to which RBPs and miRISCs functionally interact to regulate gene expression is likely extensive, we have only begun to unravel these functional interactions. An RNAi-based screen of putative ALG-1 Argonaute interactors has identified a role for a conserved RNA binding protein, HRPK-1, in modulating miRNA activity during C. elegans development. Here, we report the physical and genetic interaction between HRPK-1 and ALG-1/miRNAs. Specifically, we report the genetic and molecular characterizations of hrpk-1 and its role in C. elegans development and miRNA-mediated target repression. We show that loss of hrpk-1 causes numerous developmental defects and enhances the mutant phenotypes associated with reduction of miRNA activity, including those of lsy-6, mir-35-family, and let-7-family miRNAs. In addition to hrpk-1 genetic interaction with these miRNA families, hrpk-1 is required for efficient regulation of lsy-6 target cog-1. We report that hrpk-1 may play a role in miRNA processing but is not globally required for mature miRNA biogenesis or ALG-1/AIN-1 miRISC assembly and confirm HRPK-1 ability to co-precipitate with ALG-1. We suggest that HRPK-1 may functionally interact with miRNAs on multiple levels to enhance miRNA/miRISC gene regulatory activity and present several models for its activity.Author summarymicroRNAs are small non-coding RNAs that regulate gene expression at the post-transcriptional level. The core microRNA Induced Silencing Complex (miRISC), composed of Argonaute, mature microRNA, and GW182 protein effector, assembles on the target messenger RNA and inhibits translation or leads to messenger RNA degradation. RNA binding proteins interface with miRNA pathways on multiple levels to coordinate gene expression regulation. Here, we report identification and characterization of HRPK-1, a conserved RNA binding protein, as a physical and functional interactor of miRNAs. We confirm the physical interaction between HRPK-1, an hnRNPK homolog, and Argonaute ALG-1. We report characterizations of hrpk-1 role in development and its functional interactions with multiple miRNA families. We suggest that HRPK-1 promotes miRNA activity on multiple levels in part by contributing to miRNA processing and by coordinating with miRISC at the level of target RNAs. This work contributes to our understanding of how RNA binding proteins and auxiliary miRNA cofactors may interface with miRNA pathways to modulate miRNA gene regulatory activity.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 552
Author(s):  
Jasmine Harley ◽  
Benjamin E. Clarke ◽  
Rickie Patani

RNA binding proteins fulfil a wide number of roles in gene expression. Multiple mechanisms of RNA binding protein dysregulation have been implicated in the pathomechanisms of several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Oxidative stress and mitochondrial dysfunction also play important roles in these diseases. In this review, we highlight the mechanistic interplay between RNA binding protein dysregulation, oxidative stress and mitochondrial dysfunction in ALS. We also discuss different potential therapeutic strategies targeting these pathways.


2021 ◽  
Vol 9 (3) ◽  
pp. 34
Author(s):  
Thomas E. Forman ◽  
Brenna J. C. Dennison ◽  
Katherine A. Fantauzzo

Cranial neural crest (NC) cells delaminate from the neural folds in the forebrain to the hindbrain during mammalian embryogenesis and migrate into the frontonasal prominence and pharyngeal arches. These cells generate the bone and cartilage of the frontonasal skeleton, among other diverse derivatives. RNA-binding proteins (RBPs) have emerged as critical regulators of NC and craniofacial development in mammals. Conventional RBPs bind to specific sequence and/or structural motifs in a target RNA via one or more RNA-binding domains to regulate multiple aspects of RNA metabolism and ultimately affect gene expression. In this review, we discuss the roles of RBPs other than core spliceosome components during human and mouse NC and craniofacial development. Where applicable, we review data on these same RBPs from additional vertebrate species, including chicken, Xenopus and zebrafish models. Knockdown or ablation of several RBPs discussed here results in altered expression of transcripts encoding components of developmental signaling pathways, as well as reduced cell proliferation and/or increased cell death, indicating that these are common mechanisms contributing to the observed phenotypes. The study of these proteins offers a relatively untapped opportunity to provide significant insight into the mechanisms underlying gene expression regulation during craniofacial morphogenesis.


2021 ◽  
Author(s):  
Rui Fu ◽  
Kimberly Wellman ◽  
Amber Baldwin ◽  
Juilee Rege ◽  
Kathryn Walters ◽  
...  

ABSTRACTAngiotensin II (AngII) binds to the type I angiotensin receptor in the adrenal cortex to initiate a cascade of events leading to the production of aldosterone, a master regulator of blood pressure. Despite extensive characterization of the transcriptional and enzymatic control of adrenocortical steroidogenesis, there are still major gaps in our knowledge related to precise regulation of AII-induced gene expression kinetics. Specifically, we do not know the regulatory contribution of RNA-binding proteins (RBPs) and RNA decay, which can control the timing of stimulus-induced gene expression. To investigate this question, we performed a high-resolution RNA-seq time course of the AngII stimulation response and 4-thiouridine pulse labeling in a steroidogenic human cell line (H295R). We identified twelve temporally distinct gene expression responses that contained mRNA encoding proteins known to be important for various steps of aldosterone production, such as cAMP signaling components and steroidogenic enzymes. AngII response kinetics for many of these mRNAs revealed a coordinated increase in both synthesis and decay. These findings were validated in primary human adrenocortical cells stimulated ex vivo with AngII. Using a candidate siRNA screen, we identified a subset of RNA-binding protein and RNA decay factors that activate or repress AngII-stimulated aldosterone production. Among the repressors of aldosterone were BTG2, which promotes deadenylation and global RNA decay. BTG2 was induced in response to AngII stimulation and promoted the repression of mRNAs encoding pro-steroidogenic factors indicating the existence of an incoherent feedforward loop controlling aldosterone homeostasis. Together, these data support a model in which coordinated increases in transcription and regulated RNA decay facilitates the major transcriptomic changes required to implement a pro-steroidogenic gene expression program that is temporally restricted to prevent aldosterone overproduction.


Author(s):  
Charannya Sozheesvari Subhramanyam ◽  
Qiong Cao ◽  
Cheng Wang ◽  
Zealyn Shi-Lin Heng ◽  
Zhihong Zhou ◽  
...  

2018 ◽  
Vol 24 (16) ◽  
pp. 1766-1771 ◽  
Author(s):  
Kazuya Masuda ◽  
Tadamitsu Kishimoto

Background: Infection, tissue damage and aging can cause inflammation with high levels of inflammatory cytokines. Overproduction of inflammatory cytokines often leads to systemic inflammatory response syndrome (SIRS), severe sepsis, and septic shock. However, prominent therapeutic targets have not been found, although the incidence of sepsis is likely to increase annually. Our recent studies indicate that some RNA-binding proteins, which control gene expression of inflammatory cytokines at the post-transcriptional level, may play a critical role in inflammatory diseases such as sepsis. Results: 1) One of the RNA-binding proteins, AT-rich interactive domain-containing 5a (Arid5a) promotes cytokine production through control of mRNA half-lives of pro-inflammatory molecules such as IL-6, STAT3, T-bet, and OX40 in activated macrophages and T cells. Arid5a KO mice are refractory to endotoxin shock, bleomycininduced lung injury, and inflammatory autoimmune disease. 2) Chlorpromazine (CPZ), which is recognized as a psychotic drug, impairs post-transcriptional gene expression of Il6 in LPS-stimulated macrophages: CPZ inhibits the binding activity of Arid5a to the 3’UTR of Il6 mRNA, thereby destabilizing Il6 mRNA possibly through suppression of Arid5a expression. 3) CPZ has strong suppressive effects on cytokine production such as TNF-α in vivo. Mice with treatment of CPZ are resistant to lipopolysaccharide (LPS)-induced shock. Conclusion: Thus, Arid5a contributes to the activation of macrophages and T cells through positive control of mRNA half-lives of inflammatory cytokines and its related molecules, which might lead to cytokine storm. Interestingly, Arid5a was identified from an inhibitory effect of CPZ on IL-6 production in macrophages activated by LPS. Therefore, CPZ derivatives or Arid5a inhibitors may have a potential to suppress severe sepsis through control of post-transcriptional gene expression.


Sign in / Sign up

Export Citation Format

Share Document