scholarly journals A New Multistate Transition Model For Effect Estimation In Randomized Trials With Treatment Switching And A Cured Subgroup

Author(s):  
Haixia Hu ◽  
Ling Wang ◽  
Chen Li ◽  
Wei Ge ◽  
Jielai Xia

Abstract Background: Many methods, including multistate models, have been proposed in the literature to estimate the treatment effect on overall survival in randomized trials with treatment switching permit after the disease progression. Nevertheless, the cured fraction of patients has not been considered. The cured would never experience the progressive disease, but they may suffer death with a hazard comparable to that of people without the disease. With the mix of the cured subgroup, existing methods yield highly biased effect estimation and fail to reflect the truth in uncured patients. Methods: In this paper, we propose a new multistate transition model to incorporate the cure, progression, treatment switching, and death states during trials. In the proposed model, the probability of cure and the death hazard of the cured are modeled separately. For the not cured patients, the semi-competing risks model is used with the treatment effect evaluated via transitional hazards between states. The particle swarm optimization algorithm is adopted to estimate the model parameters. Results: Extensive simulation studies have been conducted to evaluate the performance of the proposed multistate model and compare it with existing treatment switching adjustment methods. Results show that in all scenarios, the treatment effect estimation of the proposed model is more accurate than that of existing treatment switching adjustment methods. Besides, the application to diffuse large B-cell lymphoma data has also illustrated the superiority of the proposed model.Conclusions: The superiority and robustness of the proposed multistate transition model qualify it to estimate the treatment effect in trials with the treatment switching permit after progression and a cured subgroup.

2020 ◽  
Vol 88 ◽  
pp. 105775 ◽  
Author(s):  
Siyun Yang ◽  
Monique Anderson Starks ◽  
Adrian F. Hernandez ◽  
Elizabeth L. Turner ◽  
Robert M. Califf ◽  
...  

2021 ◽  
pp. 103940
Author(s):  
Jiebin Chu ◽  
Zhoujian Sun ◽  
Wei Dong ◽  
Jinlong Shi ◽  
Zhengxing Huang

Author(s):  
Maggie Makar ◽  
Adith Swaminathan ◽  
Emre Kıcıman

The potential for using machine learning algorithms as a tool for suggesting optimal interventions has fueled significant interest in developing methods for estimating heterogeneous or individual treatment effects (ITEs) from observational data. While several methods for estimating ITEs have been recently suggested, these methods assume no constraints on the availability of data at the time of deployment or test time. This assumption is unrealistic in settings where data acquisition is a significant part of the analysis pipeline, meaning data about a test case has to be collected in order to predict the ITE. In this work, we present Data Efficient Individual Treatment Effect Estimation (DEITEE), a method which exploits the idea that adjusting for confounding, and hence collecting information about confounders, is not necessary at test time. DEITEE allows the development of rich models that exploit all variables at train time but identifies a minimal set of variables required to estimate the ITE at test time. Using 77 semi-synthetic datasets with varying data generating processes, we show that DEITEE achieves significant reductions in the number of variables required at test time with little to no loss in accuracy. Using real data, we demonstrate the utility of our approach in helping soon-to-be mothers make planning and lifestyle decisions that will impact newborn health.


Sign in / Sign up

Export Citation Format

Share Document