scholarly journals Association of Seasonal Ambient Air Pollution With a Risk of Adverse Perinatal Outcomes in Full-term Pregnancies: A Retrospective Cohort Study in Wenzhou, China

Author(s):  
Huijun Huang ◽  
Qiu-Yan Yu ◽  
Tian Zheng ◽  
Shan-shan Wang ◽  
Xin-Jun Yang

Abstract Prenatal exposures to ambient air pollution have been proved to be associated with adverse perinatal outcomes in previous studies. However, few studies have examined the interaction between air pollution and season of conception on term low birth weight (TLBW) or macrosomia. Birth registry data of singleton live births in Wenzhou, China between January 2015 to December 2016 were accessed from the Wenzhou maternal and child health information management platform, and the ambient air pollutants in Wenzhou were obtained on the Chinese Air Quality Online Monitoring and Analysis Platform. Single/two-pollutant binary logistic regression models were used to assess the associations between ambient air pollutants (PM2.5, PM10, NO2, SO2, and O3) and TLBW/macrosomia, further exploring if the season of conception interacts with air pollution to impact birth weight. Finally, 213,959 term newborns were selected, including 2452 (1.1 %) TLBW infants and 13173 (6.1 %) macrosomia. In single/two-pollutant models, we observed an increased risk of TLBW associated with maternal exposure to PM2.5, PM10, SO2, and NO2 during the entire pregnancy, especially in the the 2nd trimester. Maternal exposure to O3 during the 1st trimester was associated with increased macrosomia risk, and O3 exposure during the 3rd trimester was associated with increased TLBW risk contrarily. Pregnant women conceived in the warm season may undergo more adverse ambient air environment that is related to the risks of TLBW.

Author(s):  
Lisha Luo ◽  
Yunquan Zhang ◽  
Junfeng Jiang ◽  
Hanghang Luan ◽  
Chuanhua Yu ◽  
...  

In this study, we estimated the short-term effects of ambient air pollution on respiratory disease hospitalization in Taiyuan, China. Daily data of respiratory disease hospitalization, daily concentration of ambient air pollutants and meteorological factors from 1 October 2014 to 30 September 2017 in Taiyuan were included in our study. We conducted a time-series study design and applied a generalized additive model to evaluate the association between every 10-μg/m3 increment of air pollutants and percent increase of respiratory disease hospitalization. A total of 127,565 respiratory disease hospitalization cases were included in this study during the present period. In single-pollutant models, the effect values in multi-day lags were greater than those in single-day lags. PM2.5 at lag02 days, SO2 at lag03 days, PM10 and NO2 at lag05 days were observed to be strongly and significantly associated with respiratory disease hospitalization. No significant association was found between O3 and respiratory disease hospitalization. SO2 and NO2 were still significantly associated with hospitalization after adjusting for PM2.5 or PM10 into two-pollutant models. Females and younger population for respiratory disease were more vulnerable to air pollution than males and older groups. Therefore, some effective measures should be taken to strengthen the management of the ambient air pollutants, especially SO2 and NO2, and to enhance the protection of the high-risk population from air pollutants, thereby reducing the burden of respiratory disease caused by ambient air pollution.


Author(s):  
Juha Baek ◽  
Bita A. Kash ◽  
Xiaohui Xu ◽  
Mark Benden ◽  
Jon Roberts ◽  
...  

Few studies have evaluated the association between ambient air pollution and hospital readmissions among children with asthma, especially in low-income communities. This study examined the short-term effects of ambient air pollutants on hospital readmissions for pediatric asthma in South Texas. A time-stratified case-crossover study was conducted using the hospitalization data from a children’s hospital and the air pollution data, including particulate matter 2.5 (PM2.5) and ozone concentrations, from the Centers for Disease Control and Prevention between 2010 and 2014. A conditional logistic regression analysis was performed to investigate the association between ambient air pollution and hospital readmissions, controlling for outdoor temperature. We identified 111 pediatric asthma patients readmitted to the hospital between 2010 and 2014. The single-pollutant models showed that PM2.5 concentration had a significant positive effect on risk for hospital readmissions (OR = 1.082, 95% CI = 1.008–1.162, p = 0.030). In the two-pollutant models, the increased risk of pediatric readmissions for asthma was significantly associated with both elevated ozone (OR = 1.023, 95% CI = 1.001–1.045, p = 0.042) and PM2.5 concentrations (OR = 1.080, 95% CI = 1.005–1.161, p = 0.036). The effects of ambient air pollutants on hospital readmissions varied by age and season. Our findings suggest that short-term (4 days) exposure to air pollutants might increase the risk of preventable hospital readmissions for pediatric asthma patients.


Circulation ◽  
2018 ◽  
Vol 137 (suppl_1) ◽  
Author(s):  
Guozhang Xu ◽  
Donghuui Duan ◽  
Dingyun You ◽  
Jiaying Xu ◽  
Xiaoqi Feng ◽  
...  

Introduction: Epidemiological evidence on long-term exposure to ambient air pollution and type 2 diabetes (T2D) incidence are sparse, and the results are contradictory. Hypothesis: We performed a time-series analysis to investigate potential association between long-term exposure to ambient air pollution and T2D incidence in the Chinese population. Methods: Monthly time-series data between 2008-2015 on ambient air pollutants and incident T2D were obtained from the Environment Monitoring Center of Ningbo and the Chronic Disease Surveillance System of Ningbo. Relative risks (RRs) and 95% confidence intervals (95%CIs) of incident T2D per 10 μg/m 3 increase in ambient air pollutants were estimated from Poisson generalized additive models and adjusted for month, temperature, relative humidity, air pressure and wind speed. This model was combined with a distributed lag non-linear model to determine the relative risks. Main Outcome Measures: The main outcome measure was T2D incidence. Results: Long-term exposure to particulate matter <10 μm (PM10) and Sulphur dioxide (SO2) were associated with increased T2D incidence. The relative risks (RRs) of each increment in 10 μg/m 3 of PM10 and SO2 were 1.62 (95%CI, 1.16 to 2.28) and 1.63 (95%CI, 1.12 to 2.38) for overall participants, 1.56 (95%CI, 1.12 to 2.17) and 1.59 (95%CI, 1.14 to 2.23) for males, 1.68 (95%CI, 1.15 to 2.44) and 1.76 (95%CI, 1.21 to 2.56) for females, respectively. Whereas for ozone (O3) exposure, the RRs were 0.78 (95%CI, 0.68 to 0.90) for overall participants, 0.78 (95%CI, 0.69 to 0.90) for males, and 0.78 (95%CI, 0.67 to 0.91) for females, respectively. Female participants were more prone to develop T2D after long-term exposed to ambient air pollutants than male counterparts. No statistically significant associations were observed for PM2.5, NO2, and CO exposures, nor in the two- and three-pollutant models. Conclusions: Long-term exposure to PM10 and SO2 is positively associated with T2D incidence, whereas O3 is negatively associated with T2D incidence.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1066
Author(s):  
Stefania Bertazzon ◽  
Caitlin Calder-Bellamy ◽  
Rizwan Shahid ◽  
Isabelle Couloigner ◽  
Richard Wong

We performed a preliminary spatial analysis to assess the association of asthma emergency visits (AEV) with ambient air pollutants (NO2, PM2.5, PM10, Black Carbon, and VOCs) over Calgary, Canada. Descriptive analyses identify spatial patterns across the city. The spatial patterns of AEV and air pollutants were analyzed by descriptive and spatial statistics (Moran’s I and Getis G). The association between AEV, air pollutants, and socioeconomic status was assessed by correlation and regression. A spatial gradient was identified, characterized by increasing AEV incidence from west to east; this pattern has become increasingly pronounced over time. The association of asthma and air pollution is consistent with the location of industrial areas and major traffic corridors. AEV exhibited more significant associations with BTEX and PM10, particularly during the summer. Over time, AEV decreased overall, though with varying temporal patterns throughout Calgary. AEV exhibited significant and seasonal associations with ambient air pollutants. Socioeconomic status is a confounding factor in AEV in Calgary, and the AEV disparities across the city are becoming more pronounced over time. Within the current pandemic, this spatial analysis is relevant and timely, bearing potential to identify hotspots linked to ambient air pollution and populations at greater risk.


Author(s):  
Yang Ni ◽  
Wang Song ◽  
Yu Bai ◽  
Tao Liu ◽  
Guoxing Li ◽  
...  

(1) Background: Years of life lost (YLL) as a surrogate of health is important for supporting ambient air pollution related policy decisions. However, there has been little comprehensive evaluation of the short-term impact of air pollution on cause-specific YLL, especially in China. Hence in this study, we selected China as sentinel region in order to conduct a meta-analysis to evaluate disease-specific YLL due to all the main ambient air pollutants. (2) Methods: A meta-analysis was conducted to evaluate disease-specific YLL due to the main ambient air pollutants in China, and 19 studies were included. We conducted methodological quality and risk of bias assessment for each included study as well as for heterogeneity and publication bias. Subgroup analysis and sensitivity analysis were also performed. (3) Results: Meta-analysis indicated that increases in PM2.5, PM10, SO2 and NO2 were associated with 1.99–5.84 years increase in YLL from non-accidental diseases. The increase in YLL to cardiovascular disease (CVD) was associated with PM10 and NO2, and the increase in YLL to respiratory diseases (RD) was associated with PM10. (4) Conclusions: Ambient air pollution was observed to be associated with several cause-specific YLL, increasing especially for elderly people and females.


Author(s):  
Qiwei Yu ◽  
Liqiang Zhang ◽  
Kun Hou ◽  
Jingwen Li ◽  
Suhong Liu ◽  
...  

Exposure to air pollution has been suggested to be associated with an increased risk of women’s health disorders. However, it remains unknown to what extent changes in ambient air pollution affect gynecological cancer. In our case–control study, the logistic regression model was combined with the restricted cubic spline to examine the association of short-term exposure to air pollution with gynecological cancer events using the clinical data of 35,989 women in Beijing from December 2008 to December 2017. We assessed the women’s exposure to air pollutants using the monitor located nearest to each woman’s residence and working places, adjusting for age, occupation, ambient temperature, and ambient humidity. The adjusted odds ratios (ORs) were examined to evaluate gynecologic cancer risk in six time windows (Phase 1–Phase 6) of women’s exposure to air pollutants (PM2.5, CO, O3, and SO2) and the highest ORs were found in Phase 4 (240 days). Then, the higher adjusted ORs were found associated with the increased concentrations of each pollutant (PM2.5, CO, O3, and SO2) in Phase 4. For instance, the adjusted OR of gynecological cancer risk for a 1.0-mg m−3 increase in CO exposures was 1.010 (95% CI: 0.881–1.139) below 0.8 mg m−3, 1.032 (95% CI: 0.871–1.194) at 0.8–1.0 mg m−3, 1.059 (95% CI: 0.973–1.145) at 1.0–1.4 mg m−3, and 1.120 (95% CI: 0.993–1.246) above 1.4 mg m−3. The ORs calculated in different air pollution levels accessed us to identify the nonlinear association between women’s exposure to air pollutants (PM2.5, CO, O3, and SO2) and the gynecological cancer risk. This study supports that the gynecologic risks associated with air pollution should be considered in improved public health preventive measures and policymaking to minimize the dangerous effects of air pollution.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Hannah Kim ◽  
Seung-Ah Choe ◽  
Ok-Jin Kim ◽  
Sun-Young Kim ◽  
Seulgi Kim ◽  
...  

AbstractBackgroundMounting evidence implicates an association between ambient air pollution and impaired reproductive potential of human. Our study aimed to assess the association between air pollution and ovarian reserve in young, infertile women.MethodsOur study included 2276 Korean women who attended a single fertility center in 2016–2018. Women’s exposure to air pollution was assessed using concentrations of particulate matter (PM10and PM2.5), nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), and ozone (O3) that had been collected at 269 air quality monitoring sites. Exposure estimates were computed for 1, 3, 6, and 12 months prior to the ovarian reserve tests. Anti-Müllerian hormone (AMH) ratio (defined as an observed-to-expected AMH based on age) and low AMH (defined as < 0.5 ng/mL) were employed as indicators of ovarian reserve. We included a clustering effect of 177 districts in generalized estimating equations approach. A secondary analysis was conducted restricting the analyses to Seoul residents to examine the association in highly urbanized setting.ResultsThe mean age was 36.6 ± 4.2 years and AMH level was 3.3 ± 3.1 ng/mL in the study population. Average AMH ratio was 0.8 ± 0.7 and low AMH was observed in 10.3% of women (n=235). The average concentration of six air pollutants was not different between the normal ovarian reserve and low AMH groups for all averaging periods. In multivariable models, an interquartile range (IQR)-increase in 1 month-average PM10was associated with decrease in AMH ratio among total population (β= −0.06, 95% confidence interval: −0.11, 0.00). When we restrict our analysis to those living in Seoul, IQR-increases in 1 and 12 month-average PM2.5were associated with 3% (95% CI: −0.07, 0.00) and 10% (95% CI: −0.18, −0.01) decrease in AMH ratio. The ORs per IQR increase in the six air pollutants were close to null in total population and Seoul residents.ConclusionsIn a cohort of infertile Korean women, there was a suggestive evidence of the negative association between ambient PM concentration and ovarian reserve, highlighting the potential adverse impact of air pollution on women’s fertility.


Author(s):  
Zahra Namvar ◽  
Mostafa Hadei ◽  
Seyed Saeed Hashemi ◽  
Elahe Shahhosseini ◽  
Philip K. Hopke ◽  
...  

Introduction: Air pollution is one of the main causes for the significant increase of respiratory infections in Tehran. In the present study, we investigated the associations between short-term exposure to ambient air pollutants with the hospital admissions and deaths. Materials and methods: Health data from 39915 hospital admissions and 2459 registered deaths associated with these hospital admissions for respiratory infections were obtained from the Ministry of Health and Medical Education during 2014-2017. We used the distributed lag non-linear model (DLNM) for the analyses. Results: There was a statistically positive association between PM2.5 and AURI in the age group of 16 years and younger at lags 6 (RR 1.31; 1.05-1.64) and 7 (RR 1.50; 1.09-2.06). AURI admissions was associated with O3 in the age group of 16 and 65 years at lag 7 with RR 1.13 (1.00-1.27). ALRI admissions was associated with CO in the age group of 65 years and older at lag 0 with RR 1.12 (1.02-1.23). PM10 was associated with ALRI daily hospital admissions at lag 0 for males. ALRI admissions were associated with NO2 for females at lag 0. There was a positive association between ALRI deaths and SO2 in the age group of 65 years and older at lags 4 and 5 with RR 1.04 (1.00-1.09) and 1.03 (1.00-1.07), respectively. Conclusion: Exposure to outdoor air pollutants including PM10, PM2.5, SO2, NO2, O3, and CO was associated with hospital admissions for AURI and ALRI at different lags. Moreover, exposure to SO2 was associated with deaths for ALRI.


2021 ◽  
Author(s):  
Yaqi Liu ◽  
Yi Jiang ◽  
Manyi Wu ◽  
Sunghar Muheyat ◽  
Dongai Yao ◽  
...  

Abstract Background There are few studies focused on the correlations between ambient air pollution and abdominal pain, especially in emergency departments in China. Method: Daily data (from January 1, 2016 to December 31, 2018), including air pollution concentration (SO2, NO2, PM2.5, PM10, CO, and O3) and meteorological variables, for daily emergency room visits (ERVs) were collected in Wuhan, China. We conducted a time-series study to investigate the potential correlation between six ambient air pollutants and ERVs for abdominal pain and their effects, in different genders, ages and seasons. Results A total of 16,306 abdominal pain ERVs were identified during the study period. A 10-µg/m3 increase in concentration of SO2, NO2, PM2.5, PM10, CO, and O3 corresponded respectively to incremental increases in abdominal pain of 6.12% (95% confidence interval [CI]: -0.44-13.12), 1.65% (95%CI: -0.25-3.59), 1.12% (95%CI: -0.18-2.44), 0.38% (95%CI: -1.09-1.87), 9.87% (95%CI:3.14–17.05) and 1.11% (95%CI: 0.03–2.21). We observed significant correlations between CO and O3 and daily abdominal pain ERVs increase, and positive but insignificant correlations between the other pollutants and ERVs. The effects were stronger mainly for females (especially SO2 and O3) and younger people (especially CO and O3). The correlations of PM2.5 and PM10 were stronger in cool seasons, while the correlation of CO was stronger in warm seasons. Conclusion Our time-series study suggested that short-term exposure to air pollution (especially CO and O3) was positively correlated with ERVs for abdominal pain in Wuhan, China, and that their effects varied by season, gender and age. These data can add evidence on how air pollutants affect the human body, and may prompt hospitals to take specific precautions on polluted days and maintain order in emergency departments made busier due to the pollution.


2018 ◽  
Vol 25 (8) ◽  
pp. 818-825 ◽  
Author(s):  
Simone Vidale ◽  
Carlo Campana

Air pollution has a great impact on health, representing one of the leading causes of death worldwide. Previous experimental and epidemiological studies suggested the role of pollutants as risk factors for cardiovascular diseases. For this reason, international guidelines included specific statements regarding the contribution of particulate matter exposure to increase the risk of these events. In this review, we summarise the main evidence concerning the mechanisms involved in the processes linking air pollutants to the development of cardiovascular diseases.


Sign in / Sign up

Export Citation Format

Share Document