scholarly journals Discovery of Innovative Polymers for Next-Generation Gas-Separation Membranes using Interpretable Machine Learning

Author(s):  
Jason Yang ◽  
Lei Tao ◽  
Jinlong He ◽  
Jeffrey R. McCutcheon ◽  
Ying Li

Abstract Polymer membranes perform innumerable separations with far-reaching environmental implications. Despite decades of research on membrane technologies, design of new membrane materials remains a largely Edisonian process. To address this shortcoming, we demonstrate a generalizable, accurate machine-learning (ML) implementation for the discovery of innovative polymers with ideal separation performance. Specifically, multitask ML models are trained on available experimental data to link polymer chemistry to gas permeabilities of He, H2, O2, N2, CO2, and CH4. We interpret the ML models and extract chemical heuristics for membrane design, through Shapley Additive exPlanations (SHAP) analysis. We then screen over nine million hypothetical polymers through our models and identify thousands of candidates that lie well above current performance upper bounds. Notably, we discover hundreds of never-before-seen ultrapermeable polymer membranes with O2 and CO2 permeability greater than 104 and 105 Barrer, respectively. These hypothetical polymers are capable of overcoming undesirable trade-off relationship between permeability and selectivity, thus significantly expanding the currently limited library of polymer membranes for highly efficient gas separations. High-fidelity molecular dynamics simulations confirm the ML-predicted gas permeabilities of the promising candidates, which suggests that many can be translated to reality.

2021 ◽  
Author(s):  
Jason Yang ◽  
Lei Tao ◽  
Jinlong He ◽  
Jeffrey McCutcheon ◽  
Ying Li

Polymer membranes perform innumerable separations with far-reaching environmental implications. Despite decades of research on membrane technologies, design of new membrane materials remains a largely Edisonian process. To address this shortcoming, we demonstrate a generalizable, accurate machine-learning (ML) implementation for the discovery of innovative polymers with ideal separation performance. Specifically, multitask ML models are trained on available experimental data to link polymer chemistry to gas permeabilities of He, H2, O2, N2, CO2, and CH4. We interpret the ML models and extract chemical heuristics for membrane design, through Shapley Additive exPlanations (SHAP) analysis. We then screen over nine million hypothetical polymers through our models and identify thousands of candidates that lie well above current performance upper bounds. Notably, we discover hundreds of never-before-seen ultrapermeable polymer membranes with O2 and CO2 permeability greater than 104 and 105 Barrer, respectively, orders of magnitude higher than currently available polymeric membranes. These hypothetical polymers are capable of overcoming undesirable trade-off relationship between permeability and selectivity, thus significantly expanding the currently limited library of polymer membranes for highly efficient gas separations. High-fidelity molecular dynamics simulations confirm the ML-predicted gas permeabilities of the promising candidates, which suggests that many can be translated to reality.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 704 ◽  
Author(s):  
Wouter Dujardin ◽  
Cédric Van Goethem ◽  
Julian A. Steele ◽  
Maarten Roeffaers ◽  
Ivo F. J. Vankelecom ◽  
...  

Polynorbornenes are already used in a wide range of applications. They are also considered materials for polymer gas separation membranes because of their favorable thermal and chemical resistance, rigid backbone and varied chemistry. In this study, the use of 5-vinyl-2-norbornene (VNB), a new monomer in the field of gas separations, is investigated by synthesizing two series of polymers via a vinyl-addition polymerization. The first series investigates the influence of the VNB content on gas separation in a series of homo and copolymers with norbornene. The second series explores the influence of the crosslinking of polyvinylnorbornene (pVNB) on gas separation. The results indicate that while crosslinking had little effect, the gas separation performance could be fine-tuned by controlling the VNB content. As such, this work demonstrates an interesting way to significantly extend the fine-tuning possibilities of polynorbornenes for gas separations.


2016 ◽  
Vol 4 (44) ◽  
pp. 17431-17439 ◽  
Author(s):  
Ali Pournaghshband Isfahani ◽  
Behnam Ghalei ◽  
Kazuki Wakimoto ◽  
Rouhollah Bagheri ◽  
Easan Sivaniah ◽  
...  

We generate crosslinked PU membranes that retain high separation performance and provide enhanced plasticization resistance under realistic industrial separation conditions.


Membranes ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 365
Author(s):  
Yang Han ◽  
Yutong Yang ◽  
W. S. Winston Ho

CO2 capture from coal- or natural gas-derived flue gas has been widely considered as the next opportunity for the large-scale deployment of gas separation membranes. Despite the tremendous progress made in the synthesis of polymeric membranes with high CO2/N2 separation performance, only a few membrane technologies were advanced to the bench-scale study or above from a highly idealized laboratory setting. Therefore, the recent progress in polymeric membranes is reviewed in the perspectives of capture system energetics, process synthesis, membrane scale-up, modular fabrication, and field tests. These engineering considerations can provide a holistic approach to better guide membrane research and accelerate the commercialization of gas separation membranes for post-combustion carbon capture.


2006 ◽  
Vol 314 ◽  
pp. 39-44 ◽  
Author(s):  
Wendi S. Sweet ◽  
Jan B. Talbot ◽  
Richard Higgins

Electrophoretic deposition was investigated as a procedure for preparing supported membranes of zeolite 5A for use in gas separations. In particular, the addition of polyethylene imine (PEI) to the non-aqueous bath was explored as means of improving gas separation selectivity, deposit morphology, and adhesion. It was found that the addition of PEI improved all of these qualities. Post-deposition treatments such as baking and coating with polystyrene were also studied.


2020 ◽  
Author(s):  
Qi Yuan ◽  
Mariagiulia Longo ◽  
Aaron Thornton ◽  
Neil B. McKeown ◽  
Bibiana Comesana-Gandara ◽  
...  

<p><a>Polymer-based membranes can be used for energy efficient gas separations. Successful exploitation of new materials requires accurate knowledge of the transport properties of all gases of interest. An open source database of such data is of significant benefit to the research community. The Membrane Society of Australasia (https://membrane-australasia.org/) hosts a database for experimentally measured and reported polymer gas permeabilities. However, the database is incomplete, limiting its potential use as a research tool. Here, missing values in the database were filled using machine learning (ML). The ML model was validated against gas permeability measurements that were not recorded in the database. Through imputing the missing data, it is possible to re-analyse historical polymers and look for potential “missed” candidates with promising gas selectivity. In addition, for systems with limited experimental data, ML using sparse features was performed, and we suggest that once the permeability of CO<sub>2</sub> and/or O<sub>2</sub> for a polymer has been measured, most other gas permeabilities and selectivities, including those for CO<sub>2</sub>/CH<sub>4</sub> and CO<sub>2</sub>/N<sub>2</sub>, can be quantitatively estimated. This early insight into the gas permeability of a new system can be used at an initial stage of experimental measurements to rapidly identify polymer membranes worth further investigation.</a></p>


Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 877 ◽  
Author(s):  
Davide Venturi ◽  
Alexander Chrysanthou ◽  
Benjamin Dhuiège ◽  
Karim Missoum ◽  
Marco Giacinti Baschetti

The present study investigates the influence of the addition of l-arginine to a matrix of carboxymethylated nanofibrillated cellulose (CMC-NFC), with the aim of fabricating a mobile carrier facilitated transport membrane for the separation of CO2. Self-standing films were prepared by casting an aqueous suspension containing different amounts of amino acid (15–30–45 wt.%) and CMC-NFC. The permeation properties were assessed in humid conditions (70–98% relative humidity (RH)) at 35 °C for CO2 and N2 separately and compared with that of the non-loaded nanocellulose films. Both permeability and ideal selectivity appeared to be improved by the addition of l-arginine, especially when high amino-acid loadings were considered. A seven-fold increment in carbon dioxide permeability was observed between pure CMC-NFC and the 45 wt.% blend (from 29 to 220 Barrer at 94% RH), also paired to a significant increase of ideal selectivity (from 56 to 185). Interestingly, while improving the separation performance, water sorption was not substantially affected by the addition of amino acid, thus confirming that the increased permeability was not related simply to membrane swelling. Overall, the addition of aminated mobile carriers appeared to provide enhanced performances, advancing the state of the art for nanocellulose-based gas separation membranes.


2016 ◽  
Vol 52 (93) ◽  
pp. 13556-13559 ◽  
Author(s):  
Yu Seong Do ◽  
Won Hee Lee ◽  
Jong Geun Seong ◽  
Ju Sung Kim ◽  
Ho Hyun Wang ◽  
...  

Highly permeable thermally rearranged polymer membranes based on bismaleimide derivatives are reported for the first time. The membranes form semi-interpenetrating networks with other polymers endowing them with superior gas transport properties.


2020 ◽  
Vol 6 (20) ◽  
pp. eaaz4301 ◽  
Author(s):  
J. Wesley Barnett ◽  
Connor R. Bilchak ◽  
Yiwen Wang ◽  
Brian C. Benicewicz ◽  
Laura A. Murdock ◽  
...  

The field of polymer membrane design is primarily based on empirical observation, which limits discovery of new materials optimized for separating a given gas pair. Instead of relying on exhaustive experimental investigations, we trained a machine learning (ML) algorithm, using a topological, path-based hash of the polymer repeating unit. We used a limited set of experimental gas permeability data for six different gases in ~700 polymeric constructs that have been measured to date to predict the gas-separation behavior of over 11,000 homopolymers not previously tested for these properties. To test the algorithm’s accuracy, we synthesized two of the most promising polymer membranes predicted by this approach and found that they exceeded the upper bound for CO2/CH4 separation performance. This ML technique, which is trained using a relatively small body of experimental data (and no simulation data), evidently represents an innovative means of exploring the vast phase space available for polymer membrane design.


Sign in / Sign up

Export Citation Format

Share Document