scholarly journals Estimation of the Seismic Damage Potential of RC Frames Using Seismic Parameters

Author(s):  
Ali Massumi ◽  
Maryam Rahmati Selkisari

Abstract Variation of the fundamental period is regarded as one of the methods to assess the damage of the structures under earthquakes. The inter-relationship among seismic parameters and variation of the fundamental period can identify the potential structural damage of an earthquake. For this purpose, the present paper aimed to study the relations among main seismic parameters, incorporating a variety of information about ground motion and variation of fundamental period. Three RC frames were analyzed under far-fault earthquake records by nonlinear dynamic analyses and mathematical methods applied to assay the correlation between seismic parameters and variation of fundamental period. Based on the results, high correlations were observed between some seismic parameters and variation of fundamental period. Further, based on regression equations, new parameters with a very strong correlation with variations of fundamental periods were achieved, which can be regarded as appropriate indices to estimate the potential structural damage of an earthquake.

2014 ◽  
Vol 2014 ◽  
pp. 1-22 ◽  
Author(s):  
A. Elenas

This study describes two statistical methodologies to estimate the postseismic damage status of structures based on seismic parameters as novel combined procedures in earthquake engineering. Thus, a multilinear regression analysis and discriminant analysis are utilized considering twenty seismic parameters. Overall damage indices describe the postseismic damage status. Nonlinear dynamic analyses furnish the damage indices, which are considered as exact indices and references for the subsequent study. The aim is to approximate the postseismic damage indices or the damage grade of buildings using statistical methods, thus avoiding complex nonlinear dynamic analyses. The multilinear regression procedure evaluates the damage indices explicitly, and the discriminant analysis furnishes the damage grade of the structures. The proposed methods are applied to a frame structure. A set of 400 natural accelerograms is used for the training phase of the models. The quality of the models is tested initially by the same set of natural accelerograms and then by a blind prediction using a second set of synthetic accelerograms. The results of both proposed methods have shown a correct classification percentage ranging from 87.75% to 97.50% and from 70% to 90% for the sets of the natural and synthetic accelerograms, respectively.


2001 ◽  
Vol 17 (2) ◽  
pp. 333-358 ◽  
Author(s):  
Robert Tremblay ◽  
Gail M. Atkinson

The damage potential of earthquake ground motions compatible with site-specific 2% in 50 year uniform hazard spectra is compared at two North American sites in areas of moderate seismic hazard: Montreal, in the east, and Vancouver, along the west coast. For Vancouver, crustal, subcrustal and Cascadia subduction ground motion earthquake ensembles are considered. Nonlinear dynamic analyses of bi-linear single-degree-of-freedom oscillators exhibiting various ductility levels and damage laws were performed to determine R factors required to prevent structural collapse for each site and each system. Then, inelastic response parameters were computed for the general design case, wherein a prescribed R factor is used for a given system irrespective of tectonic region or structural period. The results show that the R factors vary with the ductility level, the damage law, the structural period, and the tectonic region. Neglecting the latter two dependencies in design, as is current practice, may lead to significant discrepancies in the level of protection achieved for different structures in different regions.


2017 ◽  
Vol 33 (3) ◽  
pp. 1033-1052 ◽  
Author(s):  
Neda Nabid ◽  
Iman Hajirasouliha ◽  
Mihail Petkovski

Friction control systems have been widely used as one of the efficient and cost effective solutions to control structural damage during strong earthquakes. However, the height-wise distribution of slip loads can significantly affect the seismic performance of the strengthened frames. In this study, a practical design methodology is developed for more efficient design of friction wall dampers by performing extensive nonlinear dynamic analyses on 3-, 5-, 10-, 15-, and 20-story RC frames subjected to seven spectrum-compatible design earthquakes and five different slip load distribution patterns. The results show that a uniform cumulative distribution can provide considerably higher energy dissipation capacity than the commonly used uniform slip load pattern. It is also proved that for a set of design earthquakes, there is an optimum range for slip loads that is a function of number of stories. Based on the results of this study, an empirical equation is proposed to calculate a more efficient slip load distribution of friction wall dampers for practical applications. The efficiency of the proposed method is demonstrated through several design examples.


2006 ◽  
Vol 324-325 ◽  
pp. 1289-1292
Author(s):  
K.S. Lee ◽  
Chang Sik Choi

This paper presents a method for determining required shear and flexural strengths associated with structural damage states for various levels of earthquake demand of low-rise RC buildings having a dual lateral-load resisting system. The interaction curves of the required strengths are derived for various ductility ratios based on nonlinear dynamic analyses of the singledegree- of-freedom system. Damage states of buildings controlled by both shear and flexure are evaluated by the procedure outlined by the Japanese Standard. The proposed method predicts reasonably well damage sustained by actual buildings during an earthquake. The proposed method can be used to develop performance-based seismic evaluation and rehabilitation procedures of lowrise RC buildings having a dual lateral-load resisting system.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Iman Mansouri ◽  
Jong Wan Hu ◽  
Kazem Shakeri ◽  
Shahrokh Shahbazi ◽  
Bahareh Nouri

Designer engineers have always the serious challenge regarding the choice of the kind of structures to use in the areas with significant seismic activities. Development of fragility curve provides an opportunity for designers to select a structure that will have the least fragility. This paper presents an investigation into the seismic vulnerability of both steel and reinforced concrete (RC) moment frames using fragility curves obtained by HAZUS and statistical methodologies. Fragility curves are employed for several probability parameters. Fragility curves are used to assess several probability parameters. Furthermore, it examines whether the probability of the exceedence of the damage limit state is reduced as expected. Nonlinear dynamic analyses of five-, eight-, and twelve-story frames are carried out using Perform 3D. The definition of damage states is based on the descriptions provided by HAZUS, which gives the limit states and the associated interstory drift limits for structures. The fragility curves show that the HAZUS procedure reduces probability of damage, and this reduction is higher for RC frames. Generally, the RC frames have higher fragility compared to steel frames.


2006 ◽  
Vol 22 (2) ◽  
pp. 367-390 ◽  
Author(s):  
Erol Kalkan ◽  
Sashi K. Kunnath

This paper investigates the consequences of well-known characteristics of near-fault ground motions on the seismic response of steel moment frames. Additionally, idealized pulses are utilized in a separate study to gain further insight into the effects of high-amplitude pulses on structural demands. Simple input pulses were also synthesized to simulate artificial fling-step effects in ground motions originally having forward directivity. Findings from the study reveal that median maximum demands and the dispersion in the peak values were higher for near-fault records than far-fault motions. The arrival of the velocity pulse in a near-fault record causes the structure to dissipate considerable input energy in relatively few plastic cycles, whereas cumulative effects from increased cyclic demands are more pronounced in far-fault records. For pulse-type input, the maximum demand is a function of the ratio of the pulse period to the fundamental period of the structure. Records with fling effects were found to excite systems primarily in their fundamental mode while waveforms with forward directivity in the absence of fling caused higher modes to be activated. It is concluded that the acceleration and velocity spectra, when examined collectively, can be utilized to reasonably assess the damage potential of near-fault records.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3192
Author(s):  
Kamil Drabik ◽  
Tomasz Próchniak ◽  
Kornel Kasperek ◽  
Justyna Batkowska

The aim of the study was to determine daily changes in some egg quality parameters, indirectly reflecting egg freshness, and to assess the possibility of predicting time from laying using mathematical methods. The study material consisted of 365 table eggs of medium (M, ≥53 g and <63 g) and large (L, ≥63 g and <73 g) weight classes (commercial stock, cage system, brown-shelled eggs) collected on the same day. Eggs were numbered individually and placed on transport trays and stored (14 °C, 70% RH). Every day, for 35 days, egg quality characteristics were analyzed (10 eggs per group). The change of traits in time was analyzed on the basis of linear and polynomial regression equations, depending on the trait. Based on model fitting, eight traits were selected as those most affected by storage time: egg weight and specific weight, Haugh units, albumen weight, air cell depth, yolk index, albumen and yolk pH. These traits, excluding those related to the weight, were then used in a multiple linear regression model to predict egg age. All regression models presented in this study were characterized by high predictive efficiency, which was confirmed by comparison of the observed and estimated values.


2020 ◽  
Vol 33 (2) ◽  
pp. 90-93
Author(s):  
Walid A.A. Malek ◽  
Olena Anatoliivna Ruban ◽  
Olga V. Kutova ◽  
Nataliia A. Herbina

AbstractIntroduction. Diabetes mellitus is one of the world’s most common diseases, therefore the development and introduction of new effective drugs for diabetes treatment into clinical practice is an important task for the health systems of many countries of the world.Aim. The aim of our work was to determine and substantiate the quantitative ratio of excipients for the development of the optimal composition of directly compressible ginger dry extract tablets.Materials and methods. To choose the optimal composition of tablets containing ginger dry extract, the effect of various quantitative ratios of the excipients Kollidon K30 and Neusilin UFL 2 on tablet mass pharmaceutical technical parameters, determined by established methods, was studied. For processing the experimental data, mathematical methods were used: design of experiment, regression analysis and a technique based on the theory of vector optimization.Results. The interrelation between factors that were studied and technological parameters of tablet mass and compressed tablets were analyzed using regression equations.Conclusions. The studies conducted allowed to chose the optimal composition of ginger dry extract tablets: ginger dry extract – 60%, Galen IQ 721 – 34.5%, Kollidon K30 – 3.5%, Neusilin UFL 2 – 1%, calcium stearate – 1%. The chosen tablet formulation is characterized by pharmaceutical technical parameters meeting the requirements of the European Pharmacopoeia and the State Pharmacopoeia of Ukraine.


Sign in / Sign up

Export Citation Format

Share Document