scholarly journals Radiosynthesis and Evaluation of Cyclohexyl (5-(2-[11C-Carbonyl]acetamidobenzo[d]thiazol-6-yl)-2-Methylpyridin-3-yl)Carbamate ([11C]PK68) As a New Radioligand For Imaging Receptor-Interacting Protein 1 Kinase

Author(s):  
Tomoteru Yamasaki ◽  
Katsushi Kumata ◽  
Atsuto Hiraishi ◽  
Yiding Zhang ◽  
Hidekatsu Wakizaka ◽  
...  

Abstract Background: Receptor-interacting protein 1 kinase (RIPK1) is a key enzyme in the regulation of cellular necroptosis. Recently, cyclohexyl (5-(2-acetamidobenzo[d]thiazol-6-yl)-2-methylpyridin-3-yl)carbamate (PK68, 5) has been developed as a potent inhibitor of RIPK1. Herein, we radiosynthesized [11C]PK68 as a new positron emission tomography (PET) ligand for imaging RIPK1 and evaluated its potential in vivo.Results: We synthesized [11C]PK68 by reacting amine precursor 14 with [11C]acetyl chloride. At the end of synthesis, we obtained [11C]PK68 of 1200–1790 MBq (n = 10) with >99% radiochemical purity and a molar activity of 37–99 GBq/μmol starting from 18–33 GBq of [11C]CO2. The fully automated synthesis took 30 min from the end of irradiation. In a small-animal PET study, [11C]PK68 was rapidly distributed in the liver and kidneys of healthy mice after injection, and was subsequently cleared from their bodies via hepatobiliary excretion and the intestinal reuptake pathway. Although there was no obvious specific binding of RIPK1 in the PET study, [11C]PK68 demonstrated relatively high stability in vivo, and may be used as a lead compound for further candidate development.Conclusions: In the present study, we successfully radiosynthesized [11C]PK68 and evaluated its potential in vivo. We are planning to optimize the chemical structure of [11C]PK68 and conduct further PET studies on it using pathological models.

2019 ◽  
Vol 12 (4) ◽  
pp. 166 ◽  
Author(s):  
Lauren L. Radford ◽  
Solana Fernandez ◽  
Rebecca Beacham ◽  
Retta El Sayed ◽  
Renata Farkas ◽  
...  

Overexpression of folate receptors (FRs) on different tumor types (e.g., ovarian, lung) make FRs attractive in vivo targets for directed diagnostic/therapeutic agents. Currently, no diagnostic agent suitable for positron emission tomography (PET) has been adopted for clinical FR imaging. In this work, two 55Co-labeled albumin-binding folate derivatives-[55Co]Co-cm10 and [55Co]Co-rf42-with characteristics suitable for PET imaging have been developed and evaluated. High radiochemical yields (≥95%) and in vitro stabilities (≥93%) were achieved for both compounds, and cell assays demonstrated FR-mediated uptake. Both 55Co-labeled folate conjugates demonstrated high tumor uptake of 17% injected activity per gram of tissue (IA/g) at 4 h in biodistribution studies performed in KB tumor-bearing mice. Renal uptake was similar to other albumin-binding folate derivatives, and liver uptake was lower than that of previously reported [64Cu]Cu-rf42. Small animal PET/CT images confirmed the biodistribution results and showed the clear delineation of FR-expressing tumors.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Satoshi Nozaki ◽  
Yuka Nakatani ◽  
Aya Mawatari ◽  
Nina Shibata ◽  
William E. Hume ◽  
...  

Abstract Positron emission tomography (PET) imaging can assist in the early-phase diagnostic and therapeutic evaluation of tumors. Here, we report the radiosynthesis, small animal PET imaging, and biological evaluation of a L-type amino acid transporter 1 (LAT1)-specific PET probe, 18F-FIMP. This probe demonstrates increased tumor specificity, compared to existing tumor-specific PET probes (18F-FET, 11C-MET, and 18F-FDG). Evaluation of probes by in vivo PET imaging, 18F-FIMP showed intense accumulation in LAT1-positive tumor tissues, but not in inflamed lesions, whereas intense accumulation of 18F-FDG was observed in both tumor tissues and in inflamed lesions. Metabolite analysis showed that 18F-FIMP was stable in liver microsomes, and mice tissues (plasma, urine, liver, pancreas, and tumor). Investigation of the protein incorporation of 18F-FIMP showed that it was not incorporated into protein. Furthermore, the expected mean absorbed dose of 18F-FIMP in humans was comparable or slightly higher than that of 18F-FDG and indicated that 18F-FIMP may be a safe PET probe for use in humans. 18F-FIMP may provide improved specificity for tumor diagnosis, compared to 18F-FDG, 18F-FET, and 11C-MET. This probe may be suitable for PET imaging for glioblastoma and the early-phase monitoring of cancer therapy outcomes.


2018 ◽  
Vol 11 (4) ◽  
pp. 136 ◽  
Author(s):  
Sean Tanzey ◽  
Xia Shao ◽  
Jenelle Stauff ◽  
Janna Arteaga ◽  
Phillip Sherman ◽  
...  

Positron emission tomography (PET) imaging of Colony Stimulating Factor 1 Receptor (CSF1R) is a new strategy for quantifying both neuroinflammation and inflammation in the periphery since CSF1R is expressed on microglia and macrophages. AZ683 has high affinity for CSF1R (Ki = 8 nM; IC50 = 6 nM) and >250-fold selectivity over 95 other kinases. In this paper, we report the radiosynthesis of [11C]AZ683 and initial evaluation of its use in CSF1R PET. [11C]AZ683 was synthesized by 11C-methylation of the desmethyl precursor with [11C]MeOTf in 3.0% non-corrected activity yield (based upon [11C]MeOTf), >99% radiochemical purity and high molar activity. Preliminary PET imaging with [11C]AZ683 revealed low brain uptake in rodents and nonhuman primates, suggesting that imaging neuroinflammation could be challenging but that the radiopharmaceutical could still be useful for peripheral imaging of inflammation.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Christine Vala ◽  
Céline Mothes ◽  
Gabrielle Chicheri ◽  
Pauline Magadur ◽  
Gilles Viot ◽  
...  

Abstract Background Fluorine labelled 8-((E)-4-fluoro-but-2-enyl)-3β-p-tolyl-8-aza-bicyclo[3.2.1]octane-2β-carboxylic acid methyl ester ([18F]LBT999) is a selective radioligand for the in vivo neuroimaging and quantification of the dopamine transporter by Positron Emission Tomography (PET). [18F]LBT999 was produced on a TRACERlab FXFN for the Phase I study but for Phase III and a potent industrial production transfer, production was also implemented on an AllinOne (AIO) system requiring a single use cassette. Both production methods are reported herein. Results Automation of [18F]LBT999 radiosynthesis on FXFN was carried out in 35% yield (decay-corrected) in 65 min (n = 16), with a radiochemical purity higher than 99% and a molar activity of 158 GBq/μmol at the end of synthesis. The transfer to the AIO platform followed by optimizations allowed the production of [18F]LBT999 in 32.7% yield (decay-corrected) within 48 min (n = 5), with a radiochemical purity better than 98% and a molar activity above 154 GBq/μmol on average at the end of synthesis. Quality controls of both methods met the specification for clinical application. Conclusion Both modules allow efficient and reproducible radiosynthesis of [18F]LBT999 with good radiochemical yields and a reasonable synthesis time. The developments made on AIO, such as its ability to meet pharmaceutical criteria and to more easily comply with GMP requirements, make it an optimal approach for the potent industrial production of [18F]LBT999 and future wider use.


2020 ◽  
Author(s):  
Christine Vala ◽  
Céline Mothes ◽  
Gabrielle Chicheri ◽  
Pauline Magadur ◽  
Gilles Viot ◽  
...  

Abstract Background:Fluorine labelled 8-((E)-4-fluoro-but-2-enyl)-3b-p-tolyl-8-aza-bicyclo[3.2.1]octane-2b-carboxylic acid methyl ester ([18F]LBT999) is a selective radioligand for in vivoneuroimaging and quantification of the dopamine transporter by Positron Emission Tomography (PET). [18F]LBT999 has been produced on a TRACERlabFXFN for the Phase I study but forPhase III and a potent industrial production transfer, production has been also implemented on AllinOne (AIO)system requiring single use cassette. Both productions methods are reported herein. Results:Automation of [18F]LBT999radiosynthesis on FXFN was carried out in 35% yield (decay-corrected) in 65 min (n=16), with a radiochemical purity higher than 99 %and a molar activity of 158GBq/µmol at the end of synthesis. The transfer on the AIO platform followed by optimizations allowed the production of [18F]LBT999 in 32.7% yield (decay-corrected) within 48 min (n=5), with a radiochemical purity better than 98% and a molar activity in average higher to 154 GBq/µmol at the end of synthesis. Quality controls of both methods met the specification for clinical application.Conclusion:Both modules allow efficient and reproducible radiosynthesis of [18F]LBT999 with good radiochemical yields and a reasonable synthesis time.The developments made on AIO as its ability to meet pharmaceutical criteria and to more easily comply with GMP requirements make this approach as the best for a potent industrial production of the [18F]LBT999 and a future wider use.


2020 ◽  
Author(s):  
Christine Vala ◽  
Céline Mothes ◽  
Gabrielle Chicheri ◽  
Pauline Magadur ◽  
Gilles Viot ◽  
...  

Abstract Background: Fluorine labelled 8-((E)-4-fluoro-but-2-enyl)-3b-p-tolyl-8-aza-bicyclo[3.2.1]octane-2b-carboxylic acid methyl ester ([18F]LBT999) is a selective radioligand for the in vivo neuroimaging and quantification of the dopamine transporter by Positron Emission Tomography (PET). [18F]LBT999 was produced on a TRACERlab FXFN for the Phase I study but for Phase III and a potent industrial production transfer, production was also implemented on an AllinOne (AIO) system requiring a single use cassette. Both production methods are reported herein. Results: Automation of [18F]LBT999 radiosynthesis on FXFN was carried out in 35% yield (decay-corrected) in 65 min (n=16), with a radiochemical purity higher than 99 % and a molar activity of 158 GBq/µmol at the end of synthesis. The transfer to the AIO platform followed by optimizations allowed the production of [18F]LBT999 in 32.7% yield (decay-corrected) within 48 min (n=5), with a radiochemical purity better than 98% and a molar activity above 154 GBq/µmol on average at the end of synthesis. Quality controls of both methods met the specification for clinical application.Conclusion: Both modules allow efficient and reproducible radiosynthesis of [18F]LBT999 with good radiochemical yields and a reasonable synthesis time. The developments made on AIO, such as its ability to meet pharmaceutical criteria and to more easily comply with GMP requirements, make it an optimal approach for the potent industrial production of [18F]LBT999 and future wider use.


Author(s):  
Qinheng Zheng ◽  
Hongtao Xu ◽  
Hua Wang ◽  
Wen-Ge Han Du ◽  
Nan Wang ◽  
...  

The lack of simple, efficient [<sup>18</sup>F]fluorination processes and new target-specific organofluorine probes remains the major challenge of fluorine-18-based positron emission tomography (PET). We report here a fast isotopic exchange method for the radiosynthesis of aryl [<sup>18</sup>F]fluorosulfate based PET agents enabled by the emerging sulfur fluoride exchange (SuFEx) click chemistry. The method has been applied to the fully-automated <sup>18</sup>F-radiolabeling of twenty-five structurally diverse aryl fluorosulfates with excellent radiochemical yield (83–100%) and high molar activity (up to 281 GBq µmol<sup>–1</sup>) at room temperature in 30 seconds. The purification of radiotracers requires no time-consuming high-performance liquid chromatography (HPLC), but rather a simple cartridge filtration. The utility of aryl [<sup>18</sup>F]fluorosulfate is demonstrated by the <i>in vivo</i> tumor imaging by targeting poly(ADP-ribose) polymerase 1 (PARP1).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sébastien Goutal ◽  
Martine Guillermier ◽  
Guillaume Becker ◽  
Mylène Gaudin ◽  
Yann Bramoullé ◽  
...  

Abstract Background Positron Emission Tomography (PET) imaging of the Synaptic Vesicle glycoprotein (SV) 2A is a new tool to quantify synaptic density. [18F]UCB-H was one of the first promising SV2A-ligands to be labelled and used in vivo in rodent and human, while limited information on its pharmacokinetic properties is available in the non-human primate. Here, we evaluate the reliability of the three most commonly used modelling approaches for [18F]UCB-H in the non-human cynomolgus primate, adding the coupled fit of the non-displaceable distribution volume (VND) as an alternative approach to improve unstable fit. The results are discussed in the light of the current state of SV2A PET ligands. Results [18F]UCB-H pharmacokinetic data was optimally fitted with a two-compartment model (2TCM), although the model did not always converge (large total volume of distribution (VT) or large uncertainty of the estimate). 2TCM with coupled fit K1/k2 across brain regions stabilized the quantification, and confirmed a lower specific signal of [18F]UCB-H compared to the newest SV2A-ligands. However, the measures of VND and the influx parameter (K1) are similar to what has been reported for other SV2A ligands. These data were reinforced by displacement studies using [19F]UCB-H, demonstrating only 50% displacement of the total [18F]UCB-H signal at maximal occupancy of SV2A. As previously demonstrated in clinical studies, the graphical method of Logan provided a more robust estimate of VT with only a small bias compared to 2TCM. Conclusions Modeling issues with a 2TCM due to a slow component have previously been reported for other SV2A ligands with low specific binding, or after blocking of specific binding. As all SV2A ligands share chemical structural similarities, we hypothesize that this slow binding component is common for all SV2A ligands, but only hampers quantification when specific binding is low.


2021 ◽  
Vol 22 (5) ◽  
pp. 2285
Author(s):  
Thu Hang Lai ◽  
Susann Schröder ◽  
Magali Toussaint ◽  
Sladjana Dukić-Stefanović ◽  
Mathias Kranz ◽  
...  

The adenosine A2A receptor (A2AR) represents a potential therapeutic target for neurodegenerative diseases. Aiming at the development of a positron emission tomography (PET) radiotracer to monitor changes of receptor density and/or occupancy during the A2AR-tailored therapy, we designed a library of fluorinated analogs based on a recently published lead compound (PPY). Among those, the highly affine 4-fluorobenzyl derivate (PPY1; Ki(hA2AR) = 5.3 nM) and the 2-fluorobenzyl derivate (PPY2; Ki(hA2AR) = 2.1 nM) were chosen for 18F-labeling via an alcohol-enhanced copper-mediated procedure starting from the corresponding boronic acid pinacol ester precursors. Investigations of the metabolic stability of [18F]PPY1 and [18F]PPY2 in CD-1 mice by radio-HPLC analysis revealed parent fractions of more than 76% of total activity in the brain. Specific binding of [18F]PPY2 on mice brain slices was demonstrated by in vitro autoradiography. In vivo PET/magnetic resonance imaging (MRI) studies in CD-1 mice revealed a reasonable high initial brain uptake for both radiotracers, followed by a fast clearance.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Gerard Ariño-Estrada ◽  
Gregory S. Mitchell ◽  
Prasenjit Saha ◽  
Ahmad Arzani ◽  
Simon R. Cherry ◽  
...  

AbstractSoil salinity is a global environmental challenge for crop production. Understanding the uptake and transport properties of salt in plants is crucial to evaluate their potential for growth in high salinity soils and as a basis for engineering varieties with increased salt tolerance. Positron emission tomography (PET), traditionally used in medical and animal imaging applications for assessing and quantifying the dynamic bio-distribution of molecular species, has the potential to provide useful measurements of salt transport dynamics in an intact plant. Here we report on the feasibility of studying the dynamic transport of 22Na in millet using PET. Twenty-four green foxtail (Setaria viridis L. Beauv.) plants, 12 of each of two different accessions, were incubated in a growth solution containing 22Na+ ions and imaged at 5 time points over a 2-week period using a high-resolution small animal PET scanner. The reconstructed PET images showed clear evidence of sodium transport throughout the whole plant over time. Quantitative region-of-interest analysis of the PET data confirmed a strong correlation between total 22Na activity in the plants and time. Our results showed consistent salt transport dynamics within plants of the same variety and important differences between the accessions. These differences were corroborated by independent measurement of Na+ content and expression of the NHX transcript, a gene implicated in sodium transport. Our results demonstrate that PET can be used to quantitatively evaluate the transport of sodium in plants over time and, potentially, to discern differing salt-tolerance properties between plant varieties. In this paper, we also address the practical radiation safety aspects of working with 22Na in the context of plant imaging and describe a robust pipeline for handling and incubating plants. We conclude that PET is a promising and practical candidate technology to complement more traditional salt analysis methods and provide insights into systems-level salt transport mechanisms in intact plants.


Sign in / Sign up

Export Citation Format

Share Document