scholarly journals Location-Aided Uplink Transmission for User-Centric Cell-Free Massive MIMO Systems: A Fairness Priority Perspective

Author(s):  
Chen Wei ◽  
Kui Xu ◽  
Zhexian Shen ◽  
Xiaochen Xia ◽  
Wei Xie ◽  
...  

Abstract In this paper, we investigate the uplink transmission for user-centric cell-free massive multiple-input multiple-output (MIMO) systems. The largest-large-scale-fading-based access point (AP) selection method is adopted to achieve a user-centric operation. Under this user-centric framework, we propose a novel inter-cluster interference-based (IC-IB) pilot assignment scheme to alleviate pilot contamination. Considering the local characteristics of channel estimates and statistics, we propose a location-aided distributed uplink combining scheme based on a novel proposed metric representing inter-user interference to balance the relationship among the spectral efficiency (SE), user equipment (UE) fairness and complexity, in which the normalized local partial minimum mean-squared error (LP-MMSE) combining is adopted for some APs, while the normalized maximum ratio (MR) combining is adopted for the remaining APs. A new closed-form SE expression using the normalized MR combining is derived and a novel metric to indicate the UE fairness is also proposed. Moreover, the max-min fairness (MMF) power control algorithm is utilized to further ensure uniformly good service to the UEs. Simulation results demonstrate that the channel estimation accuracy of our proposed IC-IB pilot assignment scheme outperforms that of the conventional pilot assignment schemes. Furthermore, although the proposed location-aided uplink combining scheme is not always the best in terms of the per-UE SE, it can provide the more fairness among UEs and can achieve a good trade-off between the average SE and computational complexity.

2021 ◽  
Author(s):  
Xiaoming Dai ◽  
Tiantian Yan ◽  
Yuanyuan Dong ◽  
Yuquan Luo ◽  
Hua Li

Abstract We introduce a joint weighted Neumann series (WNS) and Gauss-Seidel (GS) approach to implement an approximated linear minimum mean-squared error (LMMSE) detector for uplink massive multiple-input multiple-output (M-MIMO) systems. We first propose to initialize the GS iteration by a WNS method, which produces a closer-to-LMMSE initial solution than the conventional zero vector and diagonal-matrix based scheme. Then the GS algorithm is applied to implement an approximated LMMSE detection iteratively. Furthermore, based on the WNS, we devise a low-complexity approximate log-likelihood ratios (LLRs) computation method whose performance loss is negligible compared with the exact method. Numerical results illustrate that the proposed joint WNS-GS approach outperforms the conventional method and achieves near-LMMSE performance with significantly lower computational complexity.


2019 ◽  
Vol 4 (9) ◽  
pp. 207-211
Author(s):  
Ibukunoluwa Adetutu Adebanjo ◽  
Yekeen Olajide Olasoji ◽  
Micheal Olorunfunmi Kolawole

As we are entering the 5G era, high demand is made of wireless communication. Consistent effort has been ongoing in multiple-input multiple-output (MIMO) systems, which provide correlation on temporal and spatial domain, to meet the high throughput demand. To handle the characteristic nature of wireless channel effectively and improve the system performance, this paper considers the combination of diversity and equalization. Space-Time trellis code is combined with single-carrier modulation using two-choice equalization techniques, namely: minimum mean squared error (MMSE) equalizer and orthogonal triangular (QR) detection. MMSE gives an optimal balance between noise enhancement and net inter-symbol interference (ISI) in the transmitted signal. Use of these equalizers provides the platform of investigating the bit error rate (BER) and the pairwise error probability (PEP) at the receiver, as well as the effect of cyclic prefix reduction on the receivers. It was found that the MMSE receiver outperforms the QR receiver in terms of BER, while in terms of PEP; the QR receiver outperforms the MMSE receiver. When a cyclic prefix reduction test was carried out on both receivers, it yields a significant reduction in BER of both receivers but has no significant effect on the overall performance.


2021 ◽  
Vol 42 (2) ◽  
pp. 209
Author(s):  
Jean Marcel Faria Tonin ◽  
Taufik Abrao

Detection in multiple-input-multiple-output (MIMO) wireless communication systems is a crucial procedure in receivers since the multiple access transmission schemes generate interference due to the simultaneous transmission along with the several antennas, unlike single-input-single-output (SISO) transmission schemes. Precoding is a technique in MIMO systems used to mitigate the effects of the channel over the received signal. Hence, it is possible to adjust continuously the transmitted information to reverse the effect of the wireless channel at the receiver side. In this work, linear sub-optimal detectors and precoders for massive MIMO (M-MIMO) systems are implemented, analyzed, and compared in terms of performance-complexity trade-off. It is also being considered numerical results in both channel scenarios: a) receiver and transmitter have perfect channel state information (CSI); b) complex channel coefficients are estimated with different levels of inaccuracy. Monte-Carlo simulations (MCS) reveal that linear zero-forcing (ZF) and minimum mean squared error (MMSE) massive MIMO detectors result in a certain robustness against multi-user interference when operating under low and medium system loading, L = K/M, thanks to the favourable propagation phenomenon arising in massive MIMO systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Guangyan Liao ◽  
Feng Zhao

Hybrid precoding is widely used in millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems. However, most prior work on hybrid precoding focused on the fully connected hybrid architectures and the subconnected but fixed architectures in which each radio frequency (RF) chain is connected to a specific subset of the antennas. The limited work shows that dynamic subarray architectures address the tradeoff between achievable spectral efficiency and energy efficiency of mmWave massive MIMO systems. Nevertheless, in the multiuser hybrid precoding systems, the existing dynamic subarray schemes ignore the fairness of users and the problem of user selection. In this paper, we propose a novel multiuser hybrid precoding scheme for dynamic subarray architectures. Firstly, we select a multiuser set among all users according to the analog effective channel information of the base station (BS) and then design the subset of the antennas to each RF by the fairness antenna-partitioning algorithm. Finally, the optimal analog precoding vector is designed according to each subarray, and the digital precoding is designed by the minimum mean-squared error (MMSE) criterion. The simulation results show that the performance advantages of the proposed multiuser hybrid precoding scheme for dynamic subarray architectures.


Author(s):  
Rong Ran ◽  
Hayoung Oh

AbstractSparse-aware (SA) detectors have attracted a lot attention due to its significant performance and low-complexity, in particular for large-scale multiple-input multiple-output (MIMO) systems. Similar to the conventional multiuser detectors, the nonlinear or compressive sensing based SA detectors provide the better performance but are not appropriate for the overdetermined multiuser MIMO systems in sense of power and time consumption. The linear SA detector provides a more elegant tradeoff between performance and complexity compared to the nonlinear ones. However, the major limitation of the linear SA detector is that, as the zero-forcing or minimum mean square error detector, it was derived by relaxing the finite-alphabet constraints, and therefore its performance is still sub-optimal. In this paper, we propose a novel SA detector, named single-dimensional search-based SA (SDSB-SA) detector, for overdetermined uplink MIMO systems. The proposed SDSB-SA detector adheres to the finite-alphabet constraints so that it outperforms the conventional linear SA detector, in particular, in high SNR regime. Meanwhile, the proposed detector follows a single-dimensional search manner, so it has a very low computational complexity which is feasible for light-ware Internet of Thing devices for ultra-reliable low-latency communication. Numerical results show that the the proposed SDSB-SA detector provides a relatively better tradeoff between the performance and complexity compared with several existing detectors.


Author(s):  
M. Raja ◽  
Ha H. Nguyen ◽  
P. Muthuchidambaranathan

This paper considers the joint optimization of precoder and decoder for both uplink and downlink transmissions in multiuser multiple-input, multiple-output (MU-MIMO) systems. Focusing on the scenario when an improper constellation such as binary phase shift-keying (BPSK) or M-ary amplitude shift-keying (M-ASK) is employed, novel joint linear precoders and decoders are proposed to minimize the total mean squared error (TMSE) of the symbol estimation. The superiority of the proposed transceivers over the previously-proposed designs is thoroughly verified by simulation results.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 301
Author(s):  
Jianhe Du ◽  
Jiaqi Li ◽  
Jing He ◽  
Yalin Guan ◽  
Heyun Lin

For multi-user millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems, the precise acquisition of channel state information (CSI) is a huge challenge. With the increase of the number of antennas at the base station (BS), the traditional channel estimation techniques encounter the problems of pilot training overhead and computational complexity increasing dramatically. In this paper, we develop a step-length optimization-based joint iterative scheme for multi-user mmWave massive MIMO systems to improve channel estimation performance. The proposed estimation algorithm provides the BS with full knowledge of all channel parameters involved in up- and down-links. Compared with existing algorithms, the proposed algorithm has higher channel estimation accuracy with low complexity. Moreover, the proposed scheme performs well even with a small number of training sequences and a large number of users. Simulation results are shown to demonstrate the performance of the proposed channel estimation algorithm.


2016 ◽  
Vol 37 (1) ◽  
pp. 3
Author(s):  
Bruno Felipe Costa ◽  
Alex Miyamoto Mussi ◽  
Taufik Abrão

Este artigo analisa o desempenho de detectores com múltiplas antenas transmissoras e múltiplas antenas receptoras (MIMO – multiple-input multiple-output) em canais com desvanecimento correlacionados. Dois esquemas de detecção MIMO denominados erro quadrático médio mínimo (MMSE – minimum mean squared error) – com ou sem a etapa de cancelamento de interferência sucessiva ordenado (OSIC – ordered successive interference cancellation) – e técnica de redução treliça (LR – lattice reduction) são analisados e comparados com o limite de detecção de máxima verossimilhança (ML – maximum likelihood) em cenários específicos de interesse: (a) com incremento da eficiência espectral através do aumento do número de antenas. (b) quando há aumento nos índices de correlação de desvanecimento do canal. Neste contexto, o desempenho do detector ótimo ML-MIMO é utilizado como referência visando caracterizar o comportamento da taxa de erro de bit (BER) destes detectores MIMO e quão próximo esses estão do desempenho ML-MIMO.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 930
Author(s):  
José P. González-Coma ◽  
Pedro Suárez-Casal ◽  
Paula M. Castro ◽  
Luis Castedo

A method for channel estimation in wideband massive Multiple-Input Multiple-Output systems using hybrid digital analog architectures is developed. The proposed method is useful for Frequency-Division Duplex at either sub-6 GHz or millimeter wave frequency bands and takes into account the beam squint effect caused by the large bandwidth of the signals. To circumvent the estimation of large channel vectors, the posed algorithm relies on the slow time variation of the channel spatial covariance matrix, thus allowing for the utilization of very short training sequences. This is possibledue to the exploitation of the channel structure. After identifying the channel covariance matrix, the channel is estimated on the basis of the recovered information. To that end, we propose a novel method that relies on estimating the tap delays and the gains as sociated with each path. As a consequence, the proposed channel estimator achieves low computational complexity and significantly reduces the training overhead. Moreover, our numerical simulations show better performance results compared to the minimum mean-squared error solution.


Author(s):  
Alex M. Mussi ◽  
Taufik Abrão

AbstractA neighborhood-restricted mixed Gibbs sampling (MGS)-based approach is proposed for low-complexity high-order modulation large-scale multiple-input multiple-output (LS-MIMO) detection. The proposed LS-MIMO detector applies a neighborhood limitation (NL) on the noisy solution from the MGS at a distance d — thus, named d-simplified MGS (d-sMGS) — in order to mitigate its impact, which can be harmful when a high-order modulation is considered. Numerical simulation results considering 64-QAM demonstrated that the proposed detection method can substantially improve the MGS algorithm convergence, whereas no extra computational complexity per iteration is required. The proposed d-sMGS-based detector suitable for high-order modulation LS-MIMO further exhibits improved performance × complexity tradeoff when the system loading is high, i.e., when $\frac {K}{N}\geq 0.75$ K N ≥ 0.75 . Also, with increasing the number of dimensions, i.e., increasing number of antennas and/or modulation order, a smaller restriction of 2-sMGS was shown to be a more interesting choice than 1-sMGS.


Sign in / Sign up

Export Citation Format

Share Document