scholarly journals Electromechanical Coupling Characteristics Analysis and Research of Rotation-Parallel Flexible Robot Manipulator

Author(s):  
zhi xiao ◽  
Wenhui Zhang

Abstract RP(Rotation-Parallel) flexible robot as a typical electromechanical system. The complex electromechanical coupling effect in the system has a significant impact on the dynamic characteristics and stability of the flexible manipulator. This article investigates the electromechanical coupling dynamics and vibration response characteristics of flexible robot manipulator driven by AC(Alternating Current) servo motor with considering the start-up dynamic characteristics of the motor. Firstly, the physical model including the coupling of electromagnetic and mechanical system is established, and the dynamic model of the whole system is derived based on the global electromechanical coupling effect and Lagrange-Maxwell equations. Secondly, the virtual simulation platform is constructed with the help of MATLAB/Simulink, and the output speed characteristics of the motor drive end and the motion of the moving base are analyzed. Finally, through the joint simulation of MATLAB/Simulink dynamic simulation model and ADAMS/Controls virtual prototype model, the vibration characteristics of flexible manipulator under electromechanical coupling are obtained. The result demonstrates that the electromechanical coupling effect at the motor driving end has an obvious influence on the dynamic characteristics of the flexible manipulator, which is manifested in the increase of the vibration displacement amplitude of the flexible manipulator. With the increase of motor speed, the change of elastic vibration of flexible manipulator becomes larger, which shows that the electromechanical coupling effect of motor driving end has a greater impact on the dynamic characteristics of flexible manipulator at high speed. The analysis results are of great significance to improve the dynamic performance of motor-driven flexible robot manipulator.

2016 ◽  
Vol 13 (6) ◽  
pp. 172988141666279
Author(s):  
Jin-yong Ju ◽  
Wei Li ◽  
Xue-Feng Yang ◽  
Yu-Qiao Wang ◽  
Yu-Fei Liu

The nonstationary transition status of the motor start-up phase creates great threat against the stable operation of the flexible manipulator system. This article investigates the electromechanical coupling dynamics and vibration response characteristics for a flexible manipulator of an alternating current servomotor-driven linear positioning platform with considering the start-up dynamic characteristics of the motor. Based on the constructed global electromechanical coupling effect and the Lagrange–Maxwell equations, the dynamic model of the whole system is established. The electromechanical coupling vibration mechanism of the flexible manipulator is obtained by analyzing the multiphysical process and multiparameter coupling phenomenon of the whole system. The result demonstrates that the nonstationary transition status of the motor initialization phase is mainly manifested during the disturbance of the three-phase stator current. As the speed of the linear positioning platform increases, the current disturbance, arousing the change of the servo driving force of the linear positioning platform, has dominant frequency shift and frequency amplitude decrease. Then, the vibration response of the flexible manipulator is markedly affected and the variation of the high-order modes vibration response is more obvious. The analysis result is significant for improving the dynamic performance of the motor-driven flexible robot manipulator system.


Author(s):  
Yue-Qing Yu ◽  
Ji-Yun Yang

The dynamics and motion control of flexible robot manipulators is an advanced topic in the study of robotics. The precise tracking of the end-effector trajectory of flexible robots can be improved by the self-motion of redundant manipulators. The flexible manipulator with single-degree of kinematic redundancy has been considered only at present. This study addresses on the dynamics and motion control of flexible robots with multi-degree of kinematic redundancy. Compared with the robot with one-degree of redundancy, the optimal motion programming of a flexible robot manipulator with two-degree of redundancy has been obtained successfully based on pseudo-inverse solution. The numerical results of planar three-link and four-link flexible manipulators show the advantage of multi-degree of redundancy in improving the kinematic and dynamic performances of flexible robot manipulators.


2011 ◽  
Vol 66-68 ◽  
pp. 1142-1148 ◽  
Author(s):  
Jun Qiang Lou ◽  
Yan Ding Wei

The dynamic analysis and control of flexible robot manipulators have been the main concerns of many recent studies in aeronautics and robotics. Moreover, the complexity of this problem increases when a flexible manipulator carries a payload. In this paper, we proposed a space two-link flexible manipulator with tip payload featuring surface-bonded piezoelectric torsional actuator and shear actuator. The equations of motion for the system are obtained using Hamilton’s principle. A Lyapunov-based controller is proposed to suppress the vibration of the system. Stability of the system is also investigated. The simulation results demonstrate the proposed control strategy is well suited for active control of vibration suppression on flexible manipulators.


Robotica ◽  
1986 ◽  
Vol 4 (4) ◽  
pp. 237-242 ◽  
Author(s):  
M. Shahinpoor ◽  
A. Meghdari

SUMMARYAn expression is derived for the combined flexural-joint stiffness matrix and the elastic deformation field of a servo-controlled two-link robot manipulator. Such expressions are needed in dealing with light weight high-speed flexible robot manipulators. The approach employs a strain energy invariance principle with respect to the elemental and the system reference coordinate frames to derive the desired 9 × 9 combined flexural joint stiffness matrix.


Robotica ◽  
2006 ◽  
Vol 24 (4) ◽  
pp. 499-511 ◽  
Author(s):  
Z. Mohamed ◽  
A. K. Chee ◽  
A. W. I. Mohd Hashim ◽  
M. O. Tokhi ◽  
S. H. M. Amin ◽  
...  

This paper presents investigations into the applications and performance of positive and negative input shapers in command shaping techniques for the vibration control of a flexible robot manipulator. A constrained planar single-link flexible manipulator is considered and the dynamic model of the system is derived using the finite element method. An unshaped bang-bang torque input is used to determine the characteristic parameters of the system for design and evaluation of the input shaping control techniques. The positive and specified amplitude negative input shapers are designed based on the properties of the system. Simulation results of the response of the manipulator to the shaped inputs are presented in the time and frequency domains. Performances of the shapers are examined in terms of level of vibration reduction, time response specifications and robustness to parameters uncertainty. The effects of derivative order of the input shaper on the performance of the system are investigated. Finally, a comparative assessment of the impact amplitude polarities of the input shapers on the system performance is presented and discussed.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qingheng Meng ◽  
Yuanlin Zhang ◽  
Jin Wei ◽  
Yuh-Chung Hu ◽  
Yan Shi ◽  
...  

This paper aims at investigating the dynamic characteristics of a microring driven by dual arch electrodes because they are basic elements of microelectrostatic motors. The dual arch electrodes surround the periphery of the microring and are arranged symmetrically to the center of the ring. The electrodes are fixed while the microring is flexible. The electrostatic force will deform the microring, while the deflection of the microring changes the gap between the microring and the electrodes, thereby changing the electrostatic force. Therefore, this is an electromechanical coupling effect. The nonlinear partial-differential equation that governs the motion of the microring is derived based on thin shell theory. Then, based on the assumption of small deflection, the nonlinear governing equation is linearized by truncating the higher-order terms of the Taylor series expansion of the nonlinear electrostatic force. After that, the linearized governing equation is discretized into a set of ordinary differential equations using Galerkin method in which the mode shape functions of the ring are adopted. The influences of the structural damping of the microring and the span of the arch electrodes on the forced response and dynamical stabilities of the microring are investigated. The results show that the damping ratio has a great influence on the system instability during high-frequency excitation. The unstable region of the system can increase with the increase of the electrode span; the response amplitude can also be increased within a certain range.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 549-556
Author(s):  
Yajun Luo ◽  
Linwei Ji ◽  
Yahong Zhang ◽  
Minglong Xu ◽  
Xinong Zhang

The present work proposed an hourglass-type electromagnetic isolator with negative resistance (NR) shunt circuit to achieve the effective suppression of the micro-amplitude vibration response in various advanced instruments and equipment. By innovatively design of combining the displacement amplifier and the NR electromagnetic shunt circuit, the current new type of vibration isolator not only can effectively solve the problem of micro-amplitude vibration control, but also has significant electromechanical coupling effect, to obtain excellent vibration isolation performance. The design of the isolator and motion relationship is presented firstly. The electromechanical coupling dynamic model of the isolator is also given. Moreover, the optimal design of the NR electromagnetic shunt circuit and the stability analysis of the vibration isolation system are carried out. Finally, the simulation results about the transfer function and vibration responses demonstrated that the isolator has a significant isolation performance.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1522
Author(s):  
Fuli Zhang ◽  
Zhaohui Yuan

The flexible manipulato is widely used in the aerospace industry and various other special fields. Control accuracy is affected by the flexibility, joint friction, and terminal load. Therefore, this paper establishes a robot dynamics model under the coupling effect of flexibility, friction, and terminal load, and analyzes and studies its control. First of all, taking the structure of the central rigid body, the flexible beam, and load as the research object, the dynamic model of a flexible manipulator with terminal load is established by using the hypothesis mode and the Lagrange method. Based on the balance principle of the force and moment, the friction under the influence of flexibility and load is recalculated, and the dynamic model of the manipulator is further improved. Secondly, the coupled dynamic system is decomposed and the controller is designed by the multivariable feedback controller. Finally, using MATLAB as the simulation platform, the feasibility of dynamic simulation is verified through simulation comparison. The results show that the vibration amplitude can be reduced with the increase of friction coefficient. As the load increases, the vibration can increase further. The trajectory tracking and vibration suppression of the manipulator are effective under the control method of multi-feedback moment calculation. The research is of great significance to the control of flexible robots under the influence of multiple factors.


Sign in / Sign up

Export Citation Format

Share Document