scholarly journals Etiology and Chinese Medicine Screening of Severe COVID-19 Based on Multiomics and Serum Pharmacology

Author(s):  
Yong-Zheng Zhang ◽  
ZHANG Yong-Zheng ◽  
LI Meng-Jia ◽  
WU Yang ◽  
Lu-Feng CHENG

Abstract Background At present, scholars believe that severe COVID-19 is related to a variety of basic diseases, and we also observe this point using multi-omics method. The latest sequencing data of severe COVID-19 patients were combined to analyze the pathological mechanism, and pharmacological experimental research on local drugs was conducted, and a compound ingredient was found to have potential medicinal value. Results Here, we observed, for patients with severe COVID-19 disease, the differential miRNA expression is mainly low but having higher expression of mRNA. These differential mRNA expressions are associated with the activation of inflammatory pathways and ultimately with hypoxia and coagulation. Using database analysis, we found that Yi Xin Tong Mai Granule(YXTMG) might regulate COVID-19 through Toll-like receptor signaling pathway by acting on different immune targets. We found a new molecular mechanism for COVID-19 to turn the crisis around, the down-regulated miR-181a-5p mediates the up-regulation of PLAU and SERPINE1 molecules to cause cardiovascular adverse events, and YXTMG may prevent it. At the same time, molecular docking indicated that the its various components have anti-inflammatory activity. In vitro studies, we confirmed that YXTMG had antioxidant and anti-inflammatory activities. Conclusions The study has supplemented the potential mechanism for the conversion of mild to critical COVID-19 disease and screened the Chinese medicines for improving these factors, providing methodological reference for disease pathology and drug development.

2018 ◽  
Vol 315 (2) ◽  
pp. G231-G240 ◽  
Author(s):  
Thomas K. Hoang ◽  
Baokun He ◽  
Ting Wang ◽  
Dat Q. Tran ◽  
J. Marc Rhoads ◽  
...  

Lactobacillus reuteri DSM 17938 (LR 17938) has been shown to reduce the incidence and severity of necrotizing enterocolitis (NEC). It is unclear if preventing NEC by LR 17938 is mediated by Toll-like receptor 2 (TLR2), which is known to mediate proinflammatory responses to bacterial cell wall components. NEC was induced in newborn TLR2−/− or wild-type (WT) mice by the combination of gavage-feeding cow milk-based formula and exposure to hypoxia and cold stress. Treatment groups were administered formula supplemented with LR 17938 or placebo (deMan-Rogosa-Sharpe media). We observed that LR 17938 significantly reduced the incidence of NEC and reduced the percentage of activated effector CD4+T cells, while increasing Foxp3+ regulatory T cells in the intestinal mucosa of WT mice with NEC, but not in TLR2−/− mice. Dendritic cell (DC) activation by LR 17938 was mediated by TLR2. The percentage of tolerogenic DC in the intestine of WT mice was increased by LR 17938 treatment during NEC, a finding not observed in TLR2−/− mice. Furthermore, gut levels of proinflammatory cytokines IL-1β and IFN-γ were decreased after treatment with LR 17938 in WT mice but not in TLR2−/− mice. In conclusion, the combined in vivo and in vitro findings suggest that TLR2 receptors are involved in DC recognition and DC-priming of T cells to protect against NEC after oral administration of LR 17938. Our studies further clarify a major mechanism of probiotic LR 17938 action in preventing NEC by showing that neonatal immune modulation of LR 17938 is mediated by a mechanism requiring TLR2. NEW & NOTEWORTHY Lactobacillus reuteri DSM 17938 (LR 17938) has been shown to protect against necrotizing enterocolitis (NEC) in neonates and in neonatal animal models. The role of Toll-like receptor 2 (TLR2) as a sensor for gram-positive probiotics, activating downstream anti-inflammatory responses is unclear. Our current studies examined TLR2 −/− mice subjected to experimental NEC and demonstrated that the anti-inflammatory effects of LR 17938 are mediated via a mechanism requiring TLR2.


Author(s):  
Mohammad Mustakim Billah ◽  
Abir Huzaifa ◽  
M. Abdul Kader Khan ◽  
Nusrat Jahan Vabna ◽  
Kashfia Nawrin ◽  
...  

Background: Crotalaria verrucosa is a traditional plant frequently prescribed by the tribes for its medicinal value against inflammation. The present study was designed to investigate the scientific basis for medicinal value in inflammation by in vivo and in vitro analysis.Methods: Anti-inflammatory activity of the plant’s leaf was evaluated by two in vivo methods - carrageenan induced rat paw edema and xylene induced mice ear edema. Moreover, in vitro analysis was performed through heat induced hemolysis and heat induced protein denaturation methods.Results: The inflammation produced by carrageenan and xylene were effectively suppressed by the aqueous leaf extract of C. verrucosa (CVAQ) at 600 mg/kg body weight which was comparable to the standards. In heat induced hemolysis test the extract was able to inhibit the lysis up to 70% at 500 µg/ml whereas in heat induced protein denaturation test it reduces the percentage till 69% at the same concentration.Conclusions: The findings suggested that CVAQ possess moderate to high anti-inflammatory activity when applied in low to high concentrated doses. However, the study can only conclude from this basic evaluation that the extract needs to be further investigated for identifying the potential compound which contributed to such medicinal value of the plant.


Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 214 ◽  
Author(s):  
Annelies Verlaet ◽  
Nieke van der Bolt ◽  
Ben Meijer ◽  
Annelies Breynaert ◽  
Tania Naessens ◽  
...  

Background: Pycnogenol® (PYC), an extract of French maritime pine bark, is widely used as a dietary supplement. PYC has been shown to exert anti-inflammatory actions via inhibiting the Toll-like receptor 4 (TLR4) pathway. However, the role of the other receptors from the TLR family in the immunomodulatory activity of PYC has not been described so far. Aim: The aim of this study was to investigate whether PYC might exert its immunomodulatory properties through cell membrane TLRs (TLR1/2, TLR5, and TLR2/6) other than TLR4. Moreover, the effect of gastrointestinal metabolism on the immunomodulatory effects of PYC was investigated. Findings: We showed that intact non-metabolized PYC dose-dependently acts as an agonist of TLR1/2 and TLR2/6 and as a partial agonist of TLR5. PYC on its own does not agonize or antagonize TLR4. However, after the formation of complexes with lipopolysaccharides (LPS), it is a potent activator of TLR4 signaling. Gastrointestinal metabolism of PYC revealed the immunosuppressive potential of the retentate fraction against TLR1/2 and TLR2/6 when compared to the control fraction containing microbiota and enzymes only. The dialyzed fraction containing PYC metabolites revealed the capacity to induce anti-inflammatory IL-10 secretion. Finally, microbially metabolized PYC affected the colonic microbiota composition during in vitro gastrointestinal digestion. Conclusions: This study showed that gastrointestinal metabolism of PYC reveals its biological activity as a potential inhibitor of TLRs signaling. The results suggest that metabolized PYC acts as a partial agonist of TLR1/2 and TLR2/6 in the presence of the microbiota-derived TLR agonists (retentate fraction) and that it possesses anti-inflammatory potential reflected by the induction of IL-10 from THP-1 macrophages (dialysate fraction).


2021 ◽  
Vol 22 (15) ◽  
pp. 7776
Author(s):  
Ágnes Angyal ◽  
Zsófia Pénzes ◽  
Shahrzad Alimohammadi ◽  
Dorottya Horváth ◽  
Lili Takács ◽  
...  

Photodamage-induced and viral keratitis could benefit from treatment with novel nonsteroid anti-inflammatory agents. Therefore, we determined whether human corneal epithelial cells (HCECs) express members of the endocannabinoid system (ECS), and examined how the endocannabinoid anandamide (AEA, N-arachidonoyl ethanolamine) influences the Toll-like receptor 3 (TLR3) agonism- or UVB irradiation-induced inflammatory response of these cells. Other than confirming the presence of cannabinoid receptors, we show that endocannabinoid synthesizing and catabolizing enzymes are also expressed in HCECs in vitro, as well as in the epithelial layer of the human cornea in situ, proving that they are one possible source of endocannabinoids. p(I:C) and UVB irradiation was effective in promoting the transcription and secretion of inflammatory cytokines. Surprisingly, when applied alone in 100 nM and 10 μM, AEA also resulted in increased pro-inflammatory cytokine production. Importantly, AEA further increased levels of these cytokines in the UVB model, whereas its lower concentration partially prevented the transcriptional effect of p(I:C), while not decreasing the p(I:C)-induced cytokine release. HCECs express the enzymatic machinery required to produce endocannabinoids both in vitro and in situ. Moreover, our data show that, despite earlier reports about the anti-inflammatory potential of AEA in murine cornea, its effects on the immune phenotype of human corneal epithelium may be more complex and context dependent.


2019 ◽  
Vol 87 (5) ◽  
Author(s):  
Patricia Louis ◽  
Brian Mercer ◽  
Aiko M. Cirone ◽  
Christina Johnston ◽  
Zachary J. Lee ◽  
...  

ABSTRACTChitin is a naturalN-acetylglucosamine polymer and a major structural component of fungal cell walls. Dietary chitin is mucoadhesive; anti-inflammatory effects of chitin microparticles (CMPs; 1- to 10-μm diameters) have been demonstrated in models of inflammatory bowel disease (IBD). The goals of this study were to assess (i) whether CMPs among various chitin preparations are the most effective against colitis in male and female mice and (ii) whether host chitin-binding Toll-like receptor 2 (TLR2) and CD14 are required for the anti-inflammatory effect of chitin. We found that colitis in male mice was ameliorated by CMPs and large chitin beads (LCBs; 40 to 70 μm) but not by chitosan (deacetylated chitin) microparticles, oligosaccharide chitin, or glucosamine. In fact, LCBs were more effective than CMPs. In female colitis, on the other hand, CMPs and LCBs were equally and highly effective. Neither sex of TLR2-deficient mice showed anti-inflammatory effects when treated with LCBs. No anti-inflammatory effect of LCBs was seen in either CD14-deficient males or females. Furthermore, anin vitrostudy indicated that when LCBs and CMPs were digested with stomach acidic mammalian chitinase (AMC), their size-dependent macrophage activations were modified, at least in part, suggesting reduced particle sizes of dietary chitin in the stomach. Interestingly, stomach AMC activity was greater in males than females. Our results indicated that dietary LCBs were the most effective preparation for treating colitis in both sexes; these anti-inflammatory effects of LCBs were dependent on host TLR2 and CD14.


Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
J Bauer ◽  
F Dehm ◽  
A Koeberle ◽  
F Pollastro ◽  
G Appendino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document