scholarly journals b-value of what? Complex behavior of the magnitude distribution during and within the 2016–2017 central Italy sequence

Author(s):  
Marcus Herrmann ◽  
Ester Piegari ◽  
Warner Marzocchi

Abstract The Magnitude–Frequency-Distribution (MFD) of earthquakes is typically modeled with the (tapered) Gutenberg–Richter relation. The main parameter of this relation, the b-value, controls the relative rate of small and large earthquakes. Resolving spatiotemporal variations of the b-value is critical to understanding the earthquake occurrence process and improving earthquake forecasting. However, this variation is not well understood. Here we present unexpected MFD variability using a high-resolution earthquake catalog of the 2016–2017 central Italy sequence. Isolation of seismicity clusters reveals that the MFD differs in nearby clusters, varies or remains constant in time depending on the cluster, and features an unexpected b-value increase in the cluster where the largest event will occur. These findings suggest a strong influence of the heterogeneity and complexity of tectonic structures on the MFD. Our findings raise the question of the appropriate spatiotemporal scale for resolving the b-value, which poses a serious obstacle to interpreting and using the MFD in earthquake forecasting.

Author(s):  
Nicolas D. DeSalvio ◽  
Maxwell L. Rudolph

Abstract Earthquake precursors have long been sought as a means to predict earthquakes with very limited success. Recently, it has been suggested that a decrease in the Gutenberg–Richter b-value after a magnitude 6 earthquake is predictive of an imminent mainshock of larger magnitude, and a three-level traffic-light system has been proposed. However, this method is dependent on parameters that must be chosen by an expert. We systematically explore the parameter space to find an optimal set of parameters based on the Matthews correlation coefficient. For each parameter combination, we analyze the temporal changes in the frequency–magnitude distribution for every M ≥ 6 earthquake sequence in the U.S. Geological Survey Comprehensive Earthquake Catalog for western North America. We then consider smaller events, those with a foreshock magnitude as small as 5, and repeat the analysis to assess its performance for events that modify stresses over smaller spatial regions. We analyze 25 M ≥ 6 events and 88 M 5–6 events. We find that no perfect parameter combination exists. Although the method generates correct retrodictions for some M 5 events, the predictions are dependent on the retrospectively selected parameters. About 80%–95% of magnitude 5–6 events have too little data to generate a result. Predictions are time dependent and have large uncertainties. Without a precise definition of precursory b-value changes, this and similar prediction schemes are incompatible with the IASPEI criteria for evaluating earthquake precursors. If limitations on measuring precursory changes in seismicity and relating them to the state of stress in the crust can be overcome, real-time forecasting of mainshocks could reduce the loss of lives.


Author(s):  
Matteo Taroni ◽  
Jiancang Zhuang ◽  
Warner Marzocchi

Abstract The spatial variability of the magnitude–frequency distribution is important to improve earthquake forecasting capabilities at different time scales. Here, we develop a novel approach, based on the weighted maximum-likelihood estimation, to build a spatial model for the b-value parameter of the Gutenberg–Richter law and its uncertainty, also for earthquake catalogs with a time-varying completeness magnitude. Then, we also provide a guideline based on the Bayes factor to measure the importance of the b-value spatial variability with respect to a model having a spatially uniform b-value. Finally, we apply the procedure to a new Italian instrumental earthquake catalog from 1960 to 2019 to investigate the b-value spatial variability over the Italian territory.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1499
Author(s):  
Davide Fronzi ◽  
Francesco Mirabella ◽  
Carlo Cardellini ◽  
Stefano Caliro ◽  
Stefano Palpacelli ◽  
...  

The interaction between fluids and tectonic structures such as fault systems is a much-discussed issue. Many scientific works are aimed at understanding what the role of fault systems in the displacement of deep fluids is, by investigating the interaction between the upper mantle, the lower crustal portion and the upraising of gasses carried by liquids. Many other scientific works try to explore the interaction between the recharge processes, i.e., precipitation, and the fault zones, aiming to recognize the function of the abovementioned structures and their capability to direct groundwater flow towards preferential drainage areas. Understanding the role of faults in the recharge processes of punctual and linear springs, meant as gaining streams, is a key point in hydrogeology, as it is known that faults can act either as flow barriers or as preferential flow paths. In this work an investigation of a fault system located in the Nera River catchment (Italy), based on geo-structural investigations, tracer tests, geochemical and isotopic recharge modelling, allows to identify the role of the normal fault system before and after the 2016–2017 central Italy seismic sequence (Mmax = 6.5). The outcome was achieved by an integrated approach consisting of a structural geology field work, combined with GIS-based analysis, and of a hydrogeological investigation based on artificial tracer tests and geochemical and isotopic analyses.


2005 ◽  
Vol 12 (6) ◽  
pp. 965-977 ◽  
Author(s):  
J. R. Holliday ◽  
K. Z. Nanjo ◽  
K. F. Tiampo ◽  
J. B. Rundle ◽  
D. L. Turcotte

Abstract. No proven method is currently available for the reliable short time prediction of earthquakes (minutes to months). However, it is possible to make probabilistic hazard assessments for earthquake risk. In this paper we discuss a new approach to earthquake forecasting based on a pattern informatics (PI) method which quantifies temporal variations in seismicity. The output, which is based on an association of small earthquakes with future large earthquakes, is a map of areas in a seismogenic region ("hotspots'') where earthquakes are forecast to occur in a future 10-year time span. This approach has been successfully applied to California, to Japan, and on a worldwide basis. Because a sharp decision threshold is used, these forecasts are binary--an earthquake is forecast either to occur or to not occur. The standard approach to the evaluation of a binary forecast is the use of the relative (or receiver) operating characteristic (ROC) diagram, which is a more restrictive test and less subject to bias than maximum likelihood tests. To test our PI method, we made two types of retrospective forecasts for California. The first is the PI method and the second is a relative intensity (RI) forecast based on the hypothesis that future large earthquakes will occur where most smaller earthquakes have occurred in the recent past. While both retrospective forecasts are for the ten year period 1 January 2000 to 31 December 2009, we performed an interim analysis 5 years into the forecast. The PI method out performs the RI method under most circumstances.


2015 ◽  
Vol 57 (6) ◽  
Author(s):  
Maura Murru ◽  
Jiancang Zhuang ◽  
Rodolfo Console ◽  
Giuseppe Falcone

<div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p>In this paper, we compare the forecasting performance of several statistical models, which are used to describe the occurrence process of earthquakes in forecasting the short-term earthquake probabilities during the L’Aquila earthquake sequence in central Italy in 2009. These models include the Proximity to Past Earthquakes (PPE) model and two versions of the Epidemic Type Aftershock Sequence (ETAS) model. We used the information gains corresponding to the Poisson and binomial scores to evaluate the performance of these models. It is shown that both ETAS models work better than the PPE model. However, in comparing the two types of ETAS models, the one with the same fixed exponent coefficient (<span>alpha)</span> = 2.3 for both the productivity function and the scaling factor in the spatial response function (ETAS I), performs better in forecasting the active aftershock sequence than the model with different exponent coefficients (ETAS II), when the Poisson score is adopted. ETAS II performs better when a lower magnitude threshold of 2.0 and the binomial score are used. The reason is found to be that the catalog does not have an event of similar magnitude to the L’Aquila mainshock (M<sub>w</sub> 6.3) in the training period (April 16, 2005 to March 15, 2009), and the (<span>alpha)</span>-value is underestimated, thus the forecast seismicity is underestimated when the productivity function is extrapolated to high magnitudes. We also investigate the effect of the inclusion of small events in forecasting larger events. These results suggest that the training catalog used for estimating the model parameters should include earthquakes of magnitudes similar to the mainshock when forecasting seismicity during an aftershock sequence.</p></div></div></div>


2016 ◽  
Vol 59 ◽  
Author(s):  
L. Peruzza ◽  
R. Gee ◽  
B. Pace ◽  
G. Roberts ◽  
O. Scotti ◽  
...  

<p>We perform aftershock probabilistic seismic hazard analysis (APSHA) of the ongoing aftershock sequence following the Amatrice August 24th, 2016 Central Italy earthquake. APSHA is a time-dependent PSHA calculation where earthquake occurrence rates decrease after the occurrence of a mainshock following an Omori-type decay. In this paper we propose a fault source model based on preliminary evidence of the complex fault geometry associated with the mainshock. We then explore the possibility that the aftershock seismicity is distributed either uniformly or non-uniformly across the fault source. The hazard results are then computed for short-intermediate exposure periods (1-3 months, 1 year). They are compared to the background hazard and intended to be useful for post-earthquake safety evaluation.</p>


Author(s):  
Aleksandr Emanov ◽  
Aleksey Emanov ◽  
Aleksandr Fateev

The Bachatsky earthquake of 18 June 2013 and a seismic activation of the same name coal strip mine, started several years before the earthquake and still persists today, have been studied using temporal local seismic arrays in the area. It was found experimentally that the seismic process area is closely connected to open workings, and the earthquakes are extend-ed from the working bed to a depth of 4-5 km. Adjacent to the mine depression sedimentary rocks were activated. The technogenic seismic regime is continuous and not stationary: intervals of background seismicity with relatively weak and seldom events are disturbed by bursts of activity with a rise in the magnitude of stronger earthquakes and frequency of occurrence of weak events. The seismic activation may last for 1–3 months. During the last five years, four seismic activations have been recorded, three of which were generated by large earthquakes of 09.02.2012, ML4.3; 04.03.2013, ML3.9; 18.06.2013, ML6.1. The last one was completed by a series of perceptible earthquakes with local magnitude of 3.0–3.5. The focal mechanism of the Bachatsky earthquake is a thrust fault with one of the motion planes corresponding to the anthropogenic impact. The earthquake flow forms a single process in the space with the b-value of the Gutenberg-Richter relationship different from the natural seismicity. The studied induced seismicity does not correspond to the structural regularities of natural seismicity in the Altai-Sayan mountain area. The findings prove that the Bachatsky earthquake and associated activation can be considered as man-made events.


2013 ◽  
Vol 13 (10) ◽  
pp. 2605-2618 ◽  
Author(s):  
Q. Li ◽  
G.-M. Xu

Abstract. We found the possible correlation between the precursory pattern of tidal triggering of earthquakes and the crustal heterogeneities, which is of particular importance to the researchers in earthquake prediction and earthquake hazard prevention. We investigated the connection between the tidal variations and earthquake occurrence in the Liyang, Wunansha, Cangshan, Wenan, Luquan and Yaoan regions of China. Most of the regions show a higher correlation with tidal triggering in several years preceding the large or destructive earthquakes compared to other times, indicating that the tidal triggering may inherently relate to the nucleation of the destructive earthquakes during this time. In addition, the analysis results indicate that the Liyang, Cangshan and Luquan regions, with stronger heterogeneity, show statistically significant effects of tidal triggering preceding the large or destructive earthquakes, while the Wunansha, Wenan and Yaoan regions, with relatively weak heterogeneity, show statistically insignificant effects of it, signifying that the precursory pattern of tidal triggering of earthquakes in these six regions is possibly related to the heterogeneities of the crustal rocks. The above results suggest that when people try to find the potential earthquake hazardous areas or make middle–long-term earthquake forecasting by means of precursory pattern of the tidal triggering, the crustal heterogeneity in these areas has to be taken into consideration for the purpose of increasing the prediction efficiency. If they do not consider the influence of crustal heterogeneity on the tidal triggering of earthquakes, the prediction efficiency might greatly decrease.


2017 ◽  
Vol 1 (1) ◽  
pp. 34-40
Author(s):  
Arum Handini Primandari ◽  
Khusnul Khotimah

An earthquake is one of catastrophe which often claim numerous lives and cause great damage to infrastructure. Multiple studies from various field have been conducted in order to make a precise prediction of earthquake occurrence, such as recognizing the natural phenomena symptoms leading to the shaking and ground rupture. However, up till now there is no definite method that can predict the time and place in which earthquake will occur. By assuming that the number of earthquake follow Gutenberg-Richter law, we work b-value derived using Maximum Likelihood Method to calculate the probability of earthquake happen in the next few years. The southern sea of D.I. Yogyakarta was divided into four areas to simplify the analysis. As the result, in the next five years the first and second area have high enough probability (>0.3) to undergo more than 6.0-magnitude earthquake.


Sign in / Sign up

Export Citation Format

Share Document