scholarly journals Decoding Human Visual Colour EEG Information Using Machine Learning and Visual Evoked Potentials

Author(s):  
Yijia Wu ◽  
Xinhua Zeng ◽  
Kaiqiang Feng ◽  
Donglai Wei ◽  
Liang Song

Abstract With the rapid development of brain-computer interfaces (BCIs), human visual decoding, one of the important research directions of BCIs, has attracted a substantial amount of attention. However, most visual decoding studies have focused on graphic and image decoding. In this paper, we first demonstrate the possibility of building a new kind of task-irrelevant, simple and fast-stimulus BCI-based experimental paradigm that relies on visual evoked potentials (VEPs) during colour observation. Additionally, the features of visual colour information were found through reliable real-time decoding. We selected 9 subjects who did not have colour blindness to participate in our tests. These subjects were asked to observe red, green, and blue screens in turn with an interstimulus interval of 1 second. The machine learning results showed that the visual colour classification accuracy had a maximum of 93.73%. The latency evoked by visual colour stimuli was within the P300 range, i.e., 176.8 milliseconds for the red screen, 206.5 milliseconds for the green screen, and 225.3 milliseconds for the blue screen. The experimental results hereby show that the VEPs can be used for reliable colour real-time decoding.

Author(s):  
Murside Degirmenci ◽  
Ebru Sayilgan ◽  
Yalcin Isler

Brain Computer Interface (BCI) is a system that enables people to communicate with the outside world and control various electronic devices by interpreting only brain activity (motor movement imagination, emotional state, any focused visual or auditory stimulus, etc.). The visual stimulation based recording is one of the most popular methods among various electroencephalography (EEG) recording methods. Steady-state visual-evoked potentials (SSVEPs) where visual objects are blinking at a fixed frequency play an important role due to their high signal-to-noise ratio and higher information transfer rate in BCI applications. However, the design of multiple (more than 3) commands systems in SSVEPs based BCI systems is limited. The different approaches are recommended to overcome these problems. In this study, an approach based on machine learning is proposed to determine stimulating frequency in SSVEP signals. The data set (AVI SSVEP Dataset) is obtained through open access from the internet for simulations. The dataset includes EEG signals that was recorded when subjects looked at a flickering frequency at seven different frequencies (6-6.5-7-7.5-8.2-9.3-10Hz). In the machine learning-based approach Wigner-Ville Distribution (WVD) is used and features are extracted using Time-Frequency (TF) representations of EEG signals. These features are classified by Decision Tree, Linear Discriminant Analysis (LDA), k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), Naive Bayes, Ensemble Learning classifiers. Simulation results demonstrate that the proposed approach achieved promising accuracy rates for 7 command SSVEP systems. As a consequence, the maximum accuracy is achieved in the Ensemble Learning classifier with 47.60%.


2012 ◽  
Author(s):  
Jeffrey S. Bedwell ◽  
Yuri Rassovsky ◽  
Pamela Butler ◽  
Andrea Ranieri ◽  
Christopher Spencer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document