scholarly journals Intestinal Flora and Inflammation in Acute Coronary Syndromes

Author(s):  
Huiyan Ma ◽  
Libo Yang ◽  
Ning Yan ◽  
Hua Zhang ◽  
Xiaoxia Zhang ◽  
...  

Abstract Background: Acute coronary syndromes (ACS) is closely associated with chronic low-grade inflammation and gut microbiome composition. However, the composition and functional capacity of the gut microbiome in relation to ACS have not been systematically examined. Results: we perform a metagenome-wide association study on stools and plasma from 66 individuals with ACS and 46 healthy controls (HC). We then compared gut microbial composition using 16S ribosomal RNA gene sequencing in fecal samples to detect species with differential abundance between 2 groups. We reported that the altered composition of gut microbiota was associated with ACS and exacerbated inflammatory status. Moreover, parameters in ACS including body weights (BWs), low-density lipoprotein (LDL), triglyceride (TG), total cholesterol (TC), C-reactive protein (CRP) and high homocysteine (HCY) were elevated; whereas high-density lipoprotein (HDL) was decreased. pro-inflammatory interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α, monocyte chemoattractant protein-1(MCP-1) and lipopolysaccaride (LPS) in ACS were increased respectively. The results of 16S rRNA sequencing and analysis displayed that the overall community of gut microbiota in ACS was notably changed mainly through increasing the abundance of Bacteroidetes, Verrucomicrobia, Proteobacteria Parabacteroide, Unidentified_Enterobacteriaceae, Subdoligranulum, Akkermansia, Alistipes, Streptococcus, Paraprevotella as well as decreasing Subdoligranulum, Roseburia, Faecalibacterium, Blautia, Agathobacter, Anaerostipes, Bifidobacterium. Further analysis showed that there was a significant correlation between the above differences in gut microbiota and inflammatory factors. Conclusions: Our data represent a comprehensive resource for further investigations on the role of the gut microbiome in promoting or preventing ACS.

Author(s):  
Yue Zhao ◽  
Yuxia Liu ◽  
Shuang Li ◽  
Zhaoyun Peng ◽  
Xiantao Liu ◽  
...  

Abstract Background Lung cancer is the leading cause of cancer-related deaths worldwide (Ferlay et al., Int J Cancer 136:E359–386, 2015). In addition, lung cancer is associated with the highest mortality among all cancer types (Wu et al., Exp Ther Med 16:3004–3010, 2018). Previous studies report that microbiota play an important role in lung cancer. Notably, changes in lung and gut microbiota, are associated with progression of lung cancer. Several studies report that lung and gut microbiome promote lung cancer initiation and development by modulating metabolic pathways, inhibiting the function of immune cells, and producing pro-inflammatory factors. In addition, some factors such as microbiota dysbiosis, affect production of bacteriotoxins, genotoxicity and virulence effect, therefore, they play a key role in cancer progression. These findings imply that lung and gut microbiome are potential markers and targets for lung cancer. However, the role of microbiota in development and progression of lung cancer has not been fully explored. Purpose The aim of this study was to systemically review recent research findings on relationship of lung and gut microbiota with lung cancer. In addition, we explored gut–lung axis and potential mechanisms of lung and gut microbiota in modulating lung cancer progression. Conclusion Pulmonary and intestinal flora influence the occurrence, development, treatment and prognosis of lung cancer, and will provide novel strategies for prevention, diagnosis, and treatment of lung cancer.


Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 246
Author(s):  
Felix C.F. Schmitt ◽  
Martin Schneider ◽  
William Mathejczyk ◽  
Markus A. Weigand ◽  
Jane C. Figueiredo ◽  
...  

Changes in the gut microbiome have already been associated with postoperative complications in major abdominal surgery. However, it is still unclear whether these changes are transient or a long-lasting effect. Therefore, the aim of this prospective clinical pilot study was to examine long-term changes in the gut microbiota and to correlate these changes with the clinical course of the patient. Methods: In total, stool samples of 62 newly diagnosed colorectal cancer patients undergoing primary tumor resection were analyzed by 16S-rDNA next-generation sequencing. Stool samples were collected preoperatively in order to determine the gut microbiome at baseline as well as at 6, 12, and 24 months thereafter to observe longitudinal changes. Postoperatively, the study patients were separated into two groups—patients who suffered from postoperative complications (n = 30) and those without complication (n = 32). Patients with postoperative complications showed a significantly stronger reduction in the alpha diversity starting 6 months after operation, which does not resolve, even after 24 months. The structure of the microbiome was also significantly altered from baseline at six-month follow-up in patients with complications (p = 0.006). This was associated with a long-lasting decrease of a large number of species in the gut microbiota indicating an impact in the commensal microbiota and a long-lasting increase of Fusobacterium ulcerans. The microbial composition of the gut microbiome shows significant changes in patients with postoperative complications up to 24 months after surgery.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Stefano Romano ◽  
George M. Savva ◽  
Janis R. Bedarf ◽  
Ian G. Charles ◽  
Falk Hildebrand ◽  
...  

AbstractThe gut microbiota is emerging as an important modulator of neurodegenerative diseases, and accumulating evidence has linked gut microbes to Parkinson’s disease (PD) symptomatology and pathophysiology. PD is often preceded by gastrointestinal symptoms and alterations of the enteric nervous system accompany the disease. Several studies have analyzed the gut microbiome in PD, but a consensus on the features of the PD-specific microbiota is missing. Here, we conduct a meta-analysis re-analyzing the ten currently available 16S microbiome datasets to investigate whether common alterations in the gut microbiota of PD patients exist across cohorts. We found significant alterations in the PD-associated microbiome, which are robust to study-specific technical heterogeneities, although differences in microbiome structure between PD and controls are small. Enrichment of the genera Lactobacillus, Akkermansia, and Bifidobacterium and depletion of bacteria belonging to the Lachnospiraceae family and the Faecalibacterium genus, both important short-chain fatty acids producers, emerged as the most consistent PD gut microbiome alterations. This dysbiosis might result in a pro-inflammatory status which could be linked to the recurrent gastrointestinal symptoms affecting PD patients.


2021 ◽  
Author(s):  
Yueqiong Ni ◽  
Zoltan Lohinai ◽  
Yoshitaro Heshiki ◽  
Balazs Dome ◽  
Judit Moldvay ◽  
...  

AbstractCachexia is associated with decreased survival in cancer patients and has a prevalence of up to 80%. The etiology of cachexia is poorly understood, and limited treatment options exist. Here, we investigated the role of the human gut microbiome in cachexia by integrating shotgun metagenomics and plasma metabolomics of 31 lung cancer patients. The cachexia group showed significant differences in the gut microbial composition, functional pathways of the metagenome, and the related plasma metabolites compared to non-cachectic patients. Branched-chain amino acids (BCAAs), methylhistamine, and vitamins were significantly depleted in the plasma of cachexia patients, which was also reflected in the depletion of relevant gut microbiota functional pathways. The enrichment of BCAAs and 3-oxocholic acid in non-cachectic patients were positively correlated with gut microbial species Prevotella copri and Lactobacillus gasseri, respectively. Furthermore, the gut microbiota capacity for lipopolysaccharides biosynthesis was significantly enriched in cachectic patients. The involvement of the gut microbiome in cachexia was further observed in a high-performance machine learning model using solely gut microbial features. Our study demonstrates the links between cachectic host metabolism and specific gut microbial species and functions in a clinical setting, suggesting that the gut microbiota could have an influence on cachexia with possible therapeutic applications.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
J Roessler ◽  
F Zimmermann ◽  
D Schmidt ◽  
U Escher ◽  
A Jasina ◽  
...  

Abstract Background and aims The modulation of serum lipids, in particular of the low-density lipoprotein cholesterol (LDL-C), by statins varies between individuals. The mechanisms regulating this interindividual variation are only poorly understood. Here, we investigated the relation between the gut microbiome and the regulatory properties of atorvastatin on the serum lipidome using mice with depleted gut microbiome. Methods Over a period of 6 weeks, mice (C57BL/6) with either an intact (conventional mice, CONV, n=24) or antibiotic-based depleted gut microbiome (antibiotic treated mice, ABS, n=16) were put on standard chow diet (SCD) or high fat diet (HFD), respectively. During the last 4 weeks of treatment atorvastatin (Ator, 10mg/kg body weight/day) or control vehicle was administered via daily oral gavage. Blood lipids (total cholesterol, VLDL, LDL-C, HDL-C) and serum sphingolipids were compared among the groups. The expressions of hepatic and intestinal genes involved in cholesterol metabolism were analyzed by qRT-PCR. Alterations in the gut microbiota profile of mice with intact gut microbiome were examined using 16S RNA qRT-PCR. Results In CONV mice, HFD led to significantly increased blood LDL-C levels as compared with SCD (HFD: 36.8±1.4 mg/dl vs. SCD: 22.0±1.8 mg/dl; P<0.01). In CONV mice atorvastatin treatment significantly reduced blood LDL-C levels after HFD, whereas in ABS mice the LDL-C lowering effect of atorvastatin was markedly attenuated (CONV+HFD+Ator: 31.0±1.8 mg/dl vs. ABS+HFD+Ator: 46.4±3 mg/dl; P<0.01). A significant reduction in the abundance of several plasma lipids, in particular sphingolipids and glycerophospholipids upon atorvastatin treatment was observed in CONV mice, but not in ABS mice. The expressions of distinct hepatic and intestinal cholesterol-regulating genes (ldlr, srebp2, pcsk9 and npc1l1) upon atorvastatin treatment were significantly altered in gut microbiota depleted mice. In response to HFD a decrease in the relative abundance of the bacterial phyla Bacteroides and an increase in the relative abundance of Firmicutes was observed. The altered ratio between Bacteroides and Firmicutes in HFD fed mice was partly reversed upon atorvastatin treatment. Conclusions Our findings indicate a crucial role of the gut microbiome for the regulatory properties of atorvastatin on the serum lipidome and, in turn, support a critical impact of atorvastatin on the gut microbial composition. The results provide novel insights into potential microbiota related mechanisms underlying interindividual variation in modulation of the serum lipidome by statins, given interindividual differences in microbiome composition and function. Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): German Heart Research Foundation


2021 ◽  
Vol 23 (Supplement_D) ◽  
Author(s):  
Ashraf Reda ◽  
Ahmed Bendary ◽  
Ahmed Shawky Elserafy ◽  
Elsayed Farag ◽  
Tamer Mostafa ◽  
...  

Abstract Aims The prevalence of familial hypercholesterolemia (FH) in Egypt is largely un- known. We aimed to estimate the prevalence of FH among 3224 Egyptian patients with acute coronary syndromes enrolled from 2015 to 2018 in the nationwide cross- sectional cardioRisk project. Methods and Results We applied the Dutch Lipid Clinic criteria for the diagnosis of FH on the available data recorded for the patients enrolled in the CardioRisk project. Two main criteria were applied: the presence of premature CAD (given 2 points in the Dutch criteria), and the categorized low density lipoprotein cholesterol (LDL-C) lev- els (given 1, 3, 5, or 8 points in the Dutch criteria according to the level). From a total of 3224 patients, 2743 patients had available LDL-C levels. Among those patients, when applying the abovementioned 2 criteria, we estimated that 472 patients had at least ‘possible’ FH (17.2% of the total population). Specifically, 4 patients had ‘defi- nite’ FH (0.1%), 7 patients had ‘probable’ FH (0.25%), and 461 patients had ‘possi- ble’ FH (16.8%). Conclusion The estimated prevalence of at least ‘possible’ FH among Egyptian patients with ACS is 17%.


Gerontology ◽  
2018 ◽  
Vol 64 (6) ◽  
pp. 513-520 ◽  
Author(s):  
Sangkyu Kim ◽  
S. Michal Jazwinski

The gut microbiota shows a wide inter-individual variation, but its within-individual variation is relatively stable over time. A functional core microbiome, provided by abundant bacterial taxa, seems to be common to various human hosts regardless of their gender, geographic location, and age. With advancing chronological age, the gut microbiota becomes more diverse and variable. However, when measures of biological age are used with adjustment for chronological age, overall richness decreases, while a certain group of bacteria associated with frailty increases. This highlights the importance of considering biological or functional measures of aging. Studies using model organisms indicate that age-related gut dysbiosis may contribute to unhealthy aging and reduced longevity. The gut microbiome depends on the host nutrient signaling pathways for its beneficial effects on host health and lifespan, and gut dysbiosis disrupting the interdependence may diminish the beneficial effects or even have reverse effects. Gut dysbiosis can trigger the innate immune response and chronic low-grade inflammation, leading to many age-related degenerative pathologies and unhealthy aging. The gut microbiota communicates with the host through various biomolecules, nutrient signaling-independent pathways, and epigenetic mechanisms. Disturbance of these communications by age-related gut dysbiosis can affect the host health and lifespan. This may explain the impact of the gut microbiome on health and aging.


2014 ◽  
Vol 63 (12) ◽  
pp. A64
Author(s):  
Line Kemeyou ◽  
Sunita Dodani ◽  
Kaitlin McCurdy ◽  
Alexandra Joseph ◽  
Dale Kraemer ◽  
...  

Author(s):  
Ang Li ◽  
Tiantian Li ◽  
Xinxin Gao ◽  
Hang Yan ◽  
Jingfeng Chen ◽  
...  

Thyroid nodules are found in nearly half of the adult population. Accumulating evidence suggests that the gut microbiota plays an important role in thyroid metabolism, yet the association between gut microbiota capacity, thyroid nodules, and thyroid function has not been studied comprehensively. We performed a gut microbiome genome-wide association study in 196 patients with thyroid nodules and 283 controls by using whole-genome shotgun sequencing. We found that participants with high-grade thyroid nodules have decreased number of gut microbial species and gene families compared with those with lower grade nodules and controls. There are also significant alterations in the overall microbial composition in participants with high-grade thyroid nodules. The gut microbiome in participants with high-grade thyroid nodules is characterized by greater amino acid degradation and lower butyrate production. The relative abundances of multiple butyrate producing microbes are reduced in patients with high-grade thyroid nodules and the relative abundances of L-histidine metabolism pathways are associated with thyrotropin-releasing hormone. Our study describes the gut microbiome characteristics in thyroid nodules and a gut-thyroid link and highlight specific gut microbiota as a potential therapeutic target to regulate thyroid metabolism.


2022 ◽  
Vol 8 ◽  
Author(s):  
Shuangyue Li ◽  
Georgios Kararigas

There has been a recent, unprecedented interest in the role of gut microbiota in host health and disease. Technological advances have dramatically expanded our knowledge of the gut microbiome. Increasing evidence has indicated a strong link between gut microbiota and the development of cardiovascular diseases (CVD). In the present article, we discuss the contribution of gut microbiota in the development and progression of CVD. We further discuss how the gut microbiome may differ between the sexes and how it may be influenced by sex hormones. We put forward that regulation of microbial composition and function by sex might lead to sex-biased disease susceptibility, thereby offering a mechanistic insight into sex differences in CVD. A better understanding of this could identify novel targets, ultimately contributing to the development of innovative preventive, diagnostic and therapeutic strategies for men and women.


Sign in / Sign up

Export Citation Format

Share Document